
Joint Modeling of Text and Acoustic-Prosodic Cues for Neural Parsing

Trang Tran∗1, Shubham Toshniwal∗2, Mohit Bansal3,
Kevin Gimpel2, Karen Livescu2, Mari Ostendorf1

1Electrical Engineering, University of Washington
2Toyota Technological Institute at Chicago

3Department of Computer Science, UNC Chapel Hill

{ttmt001, ostendor}@uw.edu, mbansal@cs.unc.edu,
{shtoshni, kgimpel, klivescu}@ttic.edu

Abstract

In conversational speech, the acoustic sig-
nal provides cues that help listeners dis-
ambiguate difficult parses. For automat-
ically parsing a spoken utterance, we in-
troduce a model that integrates transcribed
text and acoustic-prosodic features using
a convolutional neural network over en-
ergy and pitch trajectories coupled with an
attention-based recurrent neural network
that accepts text and word-based prosodic
features. We find that different types of
acoustic-prosodic features are individually
helpful, and together improve parse F1
scores significantly over a strong text-only
baseline. For this study with known sen-
tence boundaries, error analysis shows that
the main benefit of acoustic-prosodic fea-
tures is in sentences with disfluencies and
that attachment errors are most improved.

1 Introduction

While constituent parsing has become a relatively
mature technology for written text, parser perfor-
mance on conversational speech lags behind re-
sults on text. Speech poses challenges for parsing.
First, transcripts may contain errors and lack punc-
tuation. Joint speech recognition and parsing is
useful for dealing with word errors and sentence
segmentation (Kahn and Ostendorf, 2012). Second,
even perfect transcripts can be difficult to handle
because of disfluencies (restarts, repetitions, and
self-corrections), filled pauses (“um”, “uh”), inter-
jections (“like”), parentheticals (“you know”, “I
mean”), and sentence fragments that are common
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in spontaneous speech. Some of these phenomena
can be handled in standard grammars. Disfluen-
cies typically require extensions of the model, and
different approaches have been explored in both
constituent parsing (Charniak and Johnson, 2001;
Johnson and Charniak, 2004) and dependency pars-
ing (Rasooli and Tetreault, 2013; Honnibal and
Johnson, 2014).

In addition to these challenges, speech also car-
ries helpful extra information – beyond the words
– associated with the prosodic structure of an ut-
terance and encoded via variation in timing and
intonation. Studies show that speakers pause in lo-
cations that are correlated with syntactic structure
(Grosjean et al., 1979), and listeners are able to use
prosodic structure in resolving syntactic ambigu-
ities (Price et al., 1991). Prosodic cues also sig-
nal disfluencies by marking the interruption point
(Shriberg, 1994). However, most speech parsing
systems in practice take little advantage of these
cues. This study focuses on this last challenge, aim-
ing to incorporate prosodic cues in a state-of-the-art
neural parser.

Researchers have explored a number of ap-
proaches for incorporating prosody in parsing. A
challenge of using prosodic features is that multi-
ple acoustic cues interact to signal prosodic struc-
ture, including pauses, duration lengthening, fun-
damental frequency modulation, and even spectral
shape. These cues also vary with the phonetic seg-
ment, emphasis, emotion and speaker, so feature ex-
traction has typically involved experimenting with
multiple different time windows and normaliza-
tion techniques. Researchers have dealt with this
by explicitly predicting prosodic structure. The
work proposed here takes advantage of advances in
neural networks to automatically learn a good fea-
ture representation for parsing without the need for
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explicitly representing prosodic constituents. To
narrow the scope of this work and facilitate error
analysis, our experiments use hand transcripts and
known sentence segmentation.

Our work offers the following contributions: We
present a neural encoder-decoder model for parsing
conversational speech that provides a framework
for directly integrating acoustic-prosodic features
with text; we demonstrate that significant improve-
ments in parsing performance are obtained with-
out requiring hand-annotated prosodic structure;
and we provide analyses that show that combining
multiple types of prosodic cues lead to gains for
specific types of ambiguities.

2 Related Work

Related work on parsing conversational speech has
mainly addressed two problems: i) handling disflu-
encies and ii) integrating prosodic cues.

One major challenge of parsing conversational
speech is the presence of disfluencies, which are
grammatical (and prosodic) interruptions. Disflu-
encies include repetitions (‘I am + I am’), repairs
(‘I am + we are’), and restarts (‘What I + Today is
the...’), where the ‘+’ corresponds to an interruption
point. Repairs often involve parallel grammatical
constructions, but they can be more complex, in-
volving hedging, clarifications, etc. One solution
for handling dislfuencies is to first automatically de-
tect them, remove the edited words (reparandum),
and then parse the cleaned-up text. Disfluency de-
tection is an active area of research (Georgila, 2009;
Qian and Liu, 2013; Ferguson et al., 2015; Zayats
et al., 2015, 2016). While disfluency detection has
improved greatly, it still does not achieve high ac-
curacy for a broad range of tasks, so researchers
have emphasized joint parsing and disfluency de-
tection. Such models have been explored for syn-
tactic constituents (Charniak and Johnson, 2001;
Kahn et al., 2005), or dependencies (Rasooli and
Tetreault, 2013; Honnibal and Johnson, 2014).

Researchers have been exploring different ap-
proaches to incorporating prosody in parsing since
the 1990s. One study used quantized acoustic-
prosodic cues as tokens in parsing, similar to punc-
tuation, and observed a degradation in performance
(Gregory et al., 2004). They hypothesize that these
tokens are problematic because they break n-gram
dependencies. Because multiple prosodic cues in-
teract to signal prosodic structure, most studies
have leveraged symbolic prosodic boundary mark-
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Original parse tree

(S (FRAG (INTJ (UH uh))

(PP (IN about)

(NP (PRP yourself) ))))

Encoder input:
uh about yourself

Decoder gold standard parse:
(S (FRAG (INTJ XX) (PP XX (NP XX))))
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Original parse tree
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(PP (IN about)

(NP (PRP yourself) ))))

Encoder input:
uh about yourself

Decoder gold standard parse:
(S (FRAG (INTJ XX) (PP XX (NP XX))))

Figure 1: Data preprocessing. Trees are linearized;
POS tags (pre-terminals) are normalized as “XX”.
Also note the annotation standard used for Switch-
board data: The root node of the tree is an “S” node
although it is not a complete sentence.

ers (prosodic breaks) based on the ToBI prosodic
annotation system (Silverman et al., 1992). In some
studies, automatically predicted prosodic breaks
are incorporated directly (Hale et al., 2006; Dreyer
and Shafran, 2007; Huang and Harper, 2010). An-
other study uses prosodic break posteriors in pars-
ing (Kahn et al., 2005). In either case, the use of
symbolic prosodic breaks requires availability of a
hand-annotated corpus for training break detection
models. In addition, the parsing approaches that
are most successful in using prosody leverage N -
best hypothesis rescoring, limiting the impact of
prosodic features to a small number of hypotheses.

Recently, attention-enabled encoder-decoder
models (Bahdanau et al., 2015) have gained trac-
tion for constituency parsing, with Vinyals et al.
(2015) achieving state-of-the-art results for the
Wall Street Journal (WSJ) corpus using an ensem-
ble. Performance has since been improved by an-
other ensemble of encoder-decoder models trained
in a multi-task setting (Luong et al., 2016). Our
models are based on this attention-based approach.

3 Task and Model Description

We next describe our encoder-attention-decoder
model that maps a sequence of word-level input
features to a linearized parse output sequence. The
word-level input feature vector consists of the con-
catenation of (learnable) word embeddings ei and
several types of acoustic-prosodic features, de-
scribed in Section 3.3.
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Figure 2: An attention-enabled encoder-decoder
model reading the input features x1, · · · ,xTs ,
where xi = [ei φi si] is composed of word em-
beddings ei, manually defined prosodic featuresφi,
and learned (CNN-based) features si. The encoder
reads the input in reverse order and the decoder out-
puts the linearized parse sequence y1, · · · , yt, · · · .

3.1 Task Setup

We assume the availability of a training treebank
of conversational speech (in our case, Switchboard-
NXT (Calhoun et al., 2010)) and corresponding
constituent parses. The transcriptions are prepro-
cessed by removing punctuation and lower-casing
all text to better mimic the speech recognition set-
ting. Following Vinyals et al. (2015), the parse
trees are linearized, with pre-terminals also normal-
ized as “XX”. Figure 1 illustrates how we convert
standard treebank parses into encoder inputs and
gold standard linearized parses.

3.2 Encoder-Attention-Decoder Parser

Our attention-based encoder-decoder model is sim-
ilar to the one used by Vinyals et al. (2015). The
encoder is a deep long short-term memory re-
current neural network (LSTM-RNN) (Hochre-
iter and Schmidhuber, 1997) that reads in a word-
level input feature sequence1, represented as a se-
quence of vectors x = (x1, · · · ,xTs) and out-
puts high-level features h = (h1, · · · ,hTs) where
hi = LSTM(xi,hi−1).2

The parse decoder is also a deep LSTM-RNN
that predicts the linearized parse sequence y =

1As in Vinyals et al. (2015), the input sequence is pro-
cessed in reverse order, as shown in Figure 2.

2For brevity we omit the LSTM equations. The details can
be found, e.g., in Zaremba et al. (2014).

(y1, · · · , yTo) as follows:

P (y|x) =
To∏
t=1

P (yt|h,y<t)

In attention-based models, the posterior distribu-
tion of the output yt at time step t is given by:

P (yt|h,y<t) = softmax(W s[ct;dt] + bs),

where vector bs and matrix W s are learnable pa-
rameters; ct is referred to as a context vector that
summarizes the encoder’s output h; and dt is the
decoder hidden state at time step t, which captures
the previous output sequence context y<t.

The attention mechanism used by Vinyals et al.
(2015) computes the context vector ct as follows:

uit = v
> tanh(W 1hi +W 2dt + ba)

αt = softmax(ut)

ct =

Ts∑
i=1

αtihi

where vectors v, ba and matrices W 1, W 2 are
learnable parameters; ut and αt are the attention
score and attention weight vector, respectively, for
decoder time step t.

The above attention mechanism is only content-
based, i.e., it is only dependent on hi, dt. It is
not location-aware, i.e., it does not consider the
“location” of the previous attention vector. For pars-
ing conversational text, location awareness can be
crucial since disfluent structures can have dupli-
cate words/phrases that may “confuse” the atten-
tion mechanism.3

In order to make the model location-aware, the
attention mechanism takes into account the pre-
vious attention weight vector αt−1. In particu-
lar, we use the attention mechanism proposed by
Chorowski et al. (2015), in which αt−1 is repre-
sented via a feature vector:

f t = F ∗αt−1

where F ∈ Rk×r represents k learnable convo-
lution filters of width r. The filters are used for
performing 1-D convolution over αt−1 to extract
k features f ti for each time step i of the input
sequence. The extracted features are then incorpo-
rated in the alignment score calculation as:

uit = v
> tanh(W 1hi +W 2dt +W ff ti + ba)

3This phenomenon has been observed in encoder-decoder
models for speech recognition (Chorowski et al., 2014).
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Figure 3: Detailed illustration of acoustic-prosodic feature learning module. CNN features are computed
from input energy and pitch features; here the CNN filter parameters are m = 3 and w = [3, 4, 5].

whereW f is another learnable parameter matrix.
Finally, the decoder hidden state dt is computed

as:
dt = LSTM([ỹt−1; ct−1],dt−1)

where ỹt−1 is the embedding vector corresponding
to the previous output symbol yt−1.

3.3 Acoustic-Prosodic Features
In previous work using encoder-decoder models for
parsing (Vinyals et al., 2015; Luong et al., 2016),
vector xi is simply the word embedding ei of the
word at position i of the input sentence. For pars-
ing conversational speech, we can also use acoustic
prosodic features. Here we explore four types of
features widely used in computational models of
prosody: pauses, duration lengthening, fundamen-
tal frequency and energy. Since the features are
different in nature (word-level measurements vs.
time series), they are integrated with the encoder-
decoder using different mechanisms.

All features are extracted from transcriptions
that are time-aligned at the word level. In a small
number of cases, the time alignment for a particular
word boundary is missing, mainly due to tokeniza-
tion. For example, contractions, such as don’t in the
original transcript, are labeled as separated words,
do and n’t, for the parser and the internal word
boundary time is missing. In many cases, these
internal times are estimated, but in a few cases
estimation was difficult. For the roughly 1% of
sentences where time alignments are missing, we
simply backoff to the text-based parser.

The pause feature vector pi for word i is the
concatenation of pre-word pause feature ppre,i and

post-word pause feature ppost,i, where each subvec-
tor is a learned embedding for 6 pause categories:
off (no pause), not-available, 0 < p ≤ 0.05 s,
0.05 s < p ≤ 0.2 s, 0.2 < p ≤ 1 s, and p > 1 s.
This bucketing scheme for pause duration is moti-
vated by the distribution of pause durations in our
data and the assumption that longer pause length
differences are not useful.

Word-final duration lengthening is a strong cue
to prosodic phrase boundaries (Wightman et al.,
1992). The word duration feature δi is a real-
valued scalar, equal to the actual word duration
divided by the mean duration of the word, clipped
to a maximum value of 5. The sample mean is
used for frequent words (count ≥ 15). For infre-
quent words we estimate the mean as the sum over
the sample means for the phonemes in the word’s
dictionary pronunciation.

For fundamental frequency (f0) and energy
(E) contours, we use a CNN to automatically learn
a mapping from the time series to a word-level vec-
tor. The contour features are extracted with 25-ms
frames with 10-ms hops using Kaldi (Povey et al.,
2011), motivated by the success of the associated f0
features in speech recognition (Ghahremani et al.,
2014). Three f0 features are used: warped Nor-
malized Cross Correlation Function (NCCF), log-
pitch with Probability of Voicing (POV)-weighted
mean subtraction over a 1.5-second window, and
the estimated derivative (delta) of the raw log pitch.
Three energy features are extracted from the Kaldi
40-mel-frequency filter bank features: Etotal, the
log of total energy normalized by dividing by the
speaker side’s max total energy; Elow, the log of



total energy in the lower 20 mel-frequency bands,
normalized by total energy, and Ehigh, the log of
total energy in the higher 20 mel-frequency bands,
normalized by total energy. Multi-band energy fea-
tures are used as a simple mechanism to capture
articulatory strengthening at prosodic constituent
onsets (Fourgeron and Keating, 1997).

Figure 3 summarizes the feature learning ap-
proach. The f0 and E features are processed at the
word level: each sequence of frames corresponding
to a word (and potentially its surrounding context)
is convolved with N filters of m sizes (a total of
mN filters). The motivation for the multiple fil-
ter sizes is to enable the computation of features
that capture information on different time scales.
For each filter, we perform a 1-D convolution over
the 6-dimensional f0/E features with a stride of
1. Each filter output is max-pooled, resulting in
mN -dimensional speech features si.

Our overall acoustic-prosodic feature vector is
the concatenation of pi, δi, and si in various com-
binations.

4 Experiments

4.1 Dataset

Our core corpus is Switchboard-NXT (Calhoun
et al., 2010), a subset of the Switchboard corpus
(Godfrey and Holliman, 1993). Switchboard I –
Release 2 (Godfrey and Holliman, 1993) is a col-
lection of about 2,400 telephone conversations be-
tween strangers; 650 such conversations were later
hand-annotated with syntactic parses as part of the
Penn Treebank Release 3 dataset (Marcus et al.,
1999), and 642 of these were further augmented
with richer layers of annotation facilitated by the
NITE XML toolkit (Calhoun et al., 2010). Our sen-
tence segmentations and syntactic trees are based
on the annotations from the Treebank 3 set, with
a few manual corrections from the NXT release.
This core dataset consists of 100K sentences, to-
taling 1M tokens forming a vocabulary of 13.5K
words. We follow the sentence boundaries defined
by the parsed data available 4.

We follow the data split defined by Charniak and
Johnson (2001), as well as related work done on
Switchboard (Johnson and Charniak, 2004; Kahn
et al., 2005; Gregory et al., 2004; Honnibal and
Johnson, 2014)5: Conversations sw2000 to sw3000

4Note that these sentence units might be inconsistent with
other layers of Switchboard annotations, such as slash units

5Part of our data preprocessing pipeline uses

Section # sentences # words
Train 97,113 729,252
Dev 5,769 50,445
Test 5,901 48,625

Table 1: Data statistics.

for training, sw4500 to sw4936 for validation (dev),
and sw4000 to sw4153 for evaluation (test). In
addition, previous work has reserved sw4154 to
sw4500 for “future use” (dev2), but we added this
set to our training set. That is, all of our models are
trained on Switchboard conversations sw2000 to
sw3000 as well as sw4154 to sw4500. The overall
data statistics are shown in Table 1.

4.2 Evaluation Metric

The standard evaluation metric for constituent pars-
ing is the parseval metric which uses bracketing
precision, recall, and F1, as in the canonical imple-
mentation of EVALB.6 Transcribed speech, how-
ever, includes disfluencies, with speech repairs (la-
beled under “EDITED” nodes in Switchboard parse
trees) being particularly problematic for statisti-
cal parsers, as explained by Charniak and Johnson
(2001). For this reason, previous work has often ex-
plicitly detected EDIT regions in conjunction with
parsing or as a preprocessing step.

In our context, we are not addressing the dis-
fluency detection problem. Therefore, besides the
fact that we are using a larger training data set,
our results are not comparable with those of pre-
vious work on Switchboard constituent parsing,
which involved removing and re-inserting EDIT
nodes during evaluation according to a set of rules
(Charniak and Johnson, 2001; Kahn et al., 2005).
Nevertheless, acknowledging the fact that we are
evaluating parsing of transcribed speech, we also
report flattened-edit parseval F1 scores (“flat-F1”),
which is parseval computed on trees with “flat-
tened” edit nodes, where the structure under edit
nodes has been eliminated so that all leaves are
immediate children.

4.3 Model Parameters and Training Details

Both the encoder and decoder are 3-layer deep
LSTM-RNNs with 256 hidden units in each layer.
For the location-aware attention, the convolution
operation uses 5 convolution filters of width 40

https://github.com/syllog1sm/swbd_tools
6http://nlp.cs.nyu.edu/evalb/

https://github.com/syllog1sm/swbd_tools
http://nlp.cs.nyu.edu/evalb/


Model F1 flat-F1
Berkeley 85.41 85.91
content-only attention 83.33 83.20
content+location attention 87.85 87.68

Table 2: Scores of text-only models on the dev set.

each. We use 512-dimensional embedding vectors
to represent words and linearized parsing symbols,
such as “(S”.

A relatively small number of configurations
are explored for the acoustic-prosodic features,
tuning based on dev set parsing performance.
Pause embeddings are tuned over {4, 16, 32}
dimensions. For the CNN, we try differ-
ent configurations of filter size combinations ∈
{[10, 25, 50], [5, 10, 25, 50]}, and number of filters
per filter size N ∈ {16, 32, 64, 128}7. These filter
size combinations are motivated by the fact that the
average word length in our dataset is 25 frames,
so intuitively the different filter sizes are captur-
ing f0 and energy phenomena on various levels:
w = 5, 10 for sub-word, w = 25 for word, and
w = 50 for word and context.

For optimization we use Adam (Kingma and Ba,
2014) with a minibatch size of 64. The initial learn-
ing rate is 0.001 which is decayed by a factor of
0.9 whenever training loss, calculated after every
500 updates, degrades w.r.t. to the worst of its pre-
vious 3 values. All models are trained for up to
50 epochs with early stopping. For regularization,
dropout with 0.3 probability is applied on the out-
put of all LSTM layers (Pham et al., 2014). We use
TensorFlow (Abadi et al., 2015) to implement all
models.

4.4 Inference

For inference, we use a greedy decoder to generate
the linearized parse sequence. The output token
with maximum posterior probability is chosen at
every time step and fed as input in the next time
step. The decoder stops upon producing the end-
of-sentence symbol. As shown in Figure 1, we also
use a post-processing step that merges the original
sentence tokens with the decoder output to obtain

7So when we use filter sizes [10, 25, 50] with 16 of each
type, we have a total of 48 filters. Also, note that the filter
sizes are actually 6 × 10, 6 × 25, etc., but since the feature
dimension is fixed (6 in our case), we specify only the filter
width.

Model fluent disfluent
content-only attention 90.86 79.94
content+location attention 92.07 85.95

Table 3: F1-score of different attention models on
fluent (2044) vs. disfluent (3725) sentences.

the standard constituent tree representation.8

5 Results

5.1 Text-only Results

We first show our text-only model results (i.e. xi =
ei) to establish a strong baseline, on top of which
we can add acoustic-prosodic features. We exper-
iment with the content-only attention model used
by Vinyals et al. (2015) and the content+location at-
tention model proposed by Chorowski et al. (2015).
For comparison with previous non-neural models,
we use a high-quality latent-variable parser, the
Berkeley parser (Petrov et al., 2006), retrained
on our Switchboard data. Table 2 compares the
three text-only models. In terms of F1, the con-
tent+location attention beats the Berkeley parser
by about 2.5% and content-only attention by about
4.5%. Interestingly, flat-F1 scores for both encoder-
decoder models is lower than their corresponding
F1 scores. This suggests that the encoder-decoder
models do well on predicting the internal structure
of EDIT nodes. The reverse is true for the Berke-
ley parser: Flattening the EDIT nodes results in a
better score.

To explain the gains of content+location atten-
tion over content-only attention, we compare their
scores on fluent (without EDIT nodes) and disflu-
ent sentences, shown in Table 3. From the table, it
is clear that most of the gains for content+location
attention are from disfluent sentences. The reason
may be that disfluent sentences can have duplicate
words or phrases, which can be problematic for a
content-only attention model. Since our best model
is the content+location attention model, we will
henceforth refer to it as our “text-only” model.

8In rare cases (and virtually none as our models converge),
the decoder does not generate a valid parse sequence, due to
the mismatch in brackets and/or the mismatch in the number
of pre-terminals and terminals, i.e., num(XX) 6= num(tokens).
In such cases, we simply add/remove brackets from either end
of the parse, or add/remove pre-terminal symbols XX in the
middle of the parse to match the number of input tokens.
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Figure 4: An example sentence from development data – the county i am i ’m in [pause] the minorities
are mostly hispanic. The text-only parser (on the left), which is oblivious to prosodic cues, makes a PP
Attachment error. The prosody-enhanced parser (on the right) uses the pause indicator to correctly predict
a constituent change after the word in.

Model F1 flat-F1
Berkeley 85.41 85.64
text-only 87.85 87.53
text + p 88.37 88.07
text + δ 88.04 87.69
text + p + δ 88.21 87.90
text + f0/E-CNN 88.52 88.21
text + p + f0/E-CNN 88.45 88.24
text + δ + f0/E-CNN 88.44 88.14
text + p + δ + f0/E-CNN 88.59 88.27

Table 4: F1 scores on the dev set.

5.2 Adding Acoustic-Prosodic Features

We extend our text-only model with the three kinds
of acoustic-prosodic features: pause (p), word du-
ration (δ), and CNN mappings of fundamental fre-
quency (f0) and energy (E) features (f0/E-CNN).

There are 23 − 1 = 7 model configurations cor-
responding to the possible combinations of the
acoustic-prosodic features. The results of the 7
model configurations and the text-only models on
our dev set are presented in Table 4. 9 First, we note
that adding any combination of acoustic-prosodic
features (individually or in sets) improves perfor-
mance over the text-only baseline. However, cer-
tain combinations of acoustic-prosodic features are
not guaranteed to be better than their subsets, sug-

9For about 1% of the sentences in both dev and test, no
time-alignments were available. Thus, we don’t have acoustic-
prosodic features in such cases, and we have to back-off to the
text-only model during evaluation.

Model F1 flat-F1
Berkeley 85.87 85.91
text-only 87.99 87.68
text + p + δ 88.06 87.70
text + f0/E-CNN* 88.44 88.17
text + p + δ + f0/E-CNN* 88.50 88.20

Table 5: F1 scores on the test set. Models marked
with * have statistically significant gains over the
text-only baseline with p-value < 0.02.

gesting negative interaction among features (e.g.
text+p+wd). The best model, text + p + δ + f0/E-
CNN, uses all three types of features and has a gain
of 0.7%, over the already-strong text-only baseline.

Table 5 presents the results on the test set. Again,
adding the acoustic-prosodic features improves
over the text-only baseline. The gains are statisti-
cally significant for the text + f0/E-CNN, and text +
p + δ + f0/E-CNN models at p-value < 0.02. The
p-values are estimated using a bootstrap test (Efron
and Tibshirani, 1993) that simulates 105 random
test draws. Our best-performing model, text + p
+ δ + f0/E-CNN, will henceforth be referred to as
“best model.”

6 Analysis

We first study performance differences between our
best model and the text-only model for varying sen-
tence lengths, shown in Figure 5. Both models do
worse on longer sentences, which is not surprising
since the corresponding parse trees tend to be more



Figure 5: F1 scores of the text-only model and
our best model as a function of sentence length.
Acoustic-prosodic information helps more as sen-
tence length increases.

Model fluent disfluent
text-only 92.07 85.90
best model 92.03 87.02

Table 6: Dev set F1-score of text-only and
best model on fluent (2029) vs. disfluent (3689)
sentences.10

complex. The performance difference between our
best model and the text-only model increases with
sentence length. This may also be expected, since
longer sentences are more likely to have multiple
prosodic phrases and disfluencies.

Because sentence boundaries are given, and so
many sentences in spontaneous speech are short,
there is a possibility that the benefit from prosody
is mainly related to disfluencies. Table 6 presents
parse scores on the subset of fluent and disfluent
sentences, suggesting that this may be the case.

We use the Berkeley Parser Analyzer (Kummer-
feld et al., 2012) to compare the types of errors
made by the different parsers.10 Table 7 presents
the relative error reductions over the text-only base-
line achieved by the text + p model and our best
model, for disfluent sentences.

This analysis shows that, by including only
pause information, we see the largest improve-
ments on PP attachment and Modifier attachment
errors. Adding the remaining acoustic-prosodic
features helps to correct more types of attachment
errors, especially VP and NP attachment. The text

10This analysis omits the 1% of the sentences that did not
have timing information.

Error Type
Disfluent Sentences

text + p best model
Clause Att. 5.7% 1.3%
Diff. Label 7.6% 4.2%
Modifier Att. 9.7% 19.1%
NP Att. -2.7% 14.5%
NP Internal 7.8% 7.4%
PP Att. 10.1% 7.8%
1-Word Phrase 6.3% 6.8%
Unary -1.1% 8.9%
VP Att. 0.0% 12.0%

Table 7: Relative error reduction over the text-only
baseline in the disfluent subset (3689 sentences)
of the development set. Shown here are the most
frequent error types (with count ≥ 100 for the text-
only model).

+ p model and the best model differ quite a bit in
the types of error reductions they provide. A more
detailed analysis of what information each type of
acoustic-prosodic feature is capturing would be an
interesting topic for future work.

Figure 4 demonstrates one case where the pause
feature helps in correcting a PP attachment error
made by a text-only parser. Other interesting ex-
amples (see Appendix) are those where the learned
f0/E features are valuable in avoiding NP attach-
ment errors in cases where the audio reveals a
prominent word at the constituent boundary, even
though there is no pause at that word.

7 Conclusion

We have presented an attention-based encoder-
decoder model for parsing conversational sen-
tences, obtaining strong results when parsing the
text transcriptions and further improved results
when including word-level acoustic-prosodic fea-
tures. Unlike recent prior work, we do not use an
explicit disfluency detection step, and we automat-
ically learn mappings of f0 and energy contours
using a CNN that is jointly trained with the atten-
tion model. The acoustic-prosodic features provide
the largest gains when sentences are disfluent or
long, and analysis of error types shows that these
features are especially helpful in repairing attach-
ment errors. Further analysis may be helpful for
revealing more specific contrasts, understanding
how fine-grained duration would impact the find-
ings, and discovering which aspects of prosody are
learned by the CNN. The significant improvement
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Figure 6: An example sentence from development data – but i ’ve two kids and all. Even though there
are no pauses between all words, the word kids is lengthened in the audio sample, helping the prosody-
enhanced parser (right) to recognize a major syntactic boundary, avoiding the NP Attachment error made
by the text-only parser (left).

obtained when using only automatically learned
features suggests that they may also be useful in
other related problems, such as dialog act recogni-
tion. In future work we would like to explore direct
speech parsing jointly with speech recognition.
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8 Appendix

8.1 Tree Examples
In figures 6, 8, 9, and 10, we follow node correc-
tion notations as in (Kummerfeld et al., 2012). In
particular, missing nodes are marked in blue on
the gold tree, extra nodes are marked red in the
predicted tree, and yellow nodes denote crossing.

8.2 Miscellany
Figure 7 shows the distribution of pause duration
in our training data. Our pause buckets of 0 < p ≤

Figure 7: Histogram of inter-word pause durations
in our training set. As expected, most of the pauses
are less than 1 second. Further binning of pause
durations ≤ 1 second reveals that the plot peaks
around 0.2 seconds and continuously decays from
there on. In some very rare cases, pauses of 5+
seconds occur within a sentence.

0.05 s, 0.05 s < p ≤ 0.2 s, 0.2 < p ≤ 1 s, and
p > 1 s described in the main paper were based on
this figure.

Table 8 shows the comprehensive error counts in
all error categories in both the fluent and disfluent
subsets.
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Figure 8: An example sentence from development data – she had two kids of her own and everything.
There were no pauses between all words in this sentence, the audio sample showed that the word own was
both lengthened and raised in intonation, giving the prosody-enhanced parser (right) a signal that own is
on a syntactic boundary. On the other hand, the text-only parser (left) had no such information and made
an NP-attachment error. This sentence also illustrates an interesting case where, in isolation, the text-only
parse makes sense (i.e. everything being an object of had). However, in the context of this conversation
(the speaker was talking about another person in an informal manner), and everything acts more like filler
- e.g. “i play the violin and stuff ”
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Figure 9: An example sentence from development data – television sure makes child rearing easy on you.
This is an example where our prosody-enhanced parser (left) did worse than the text-only parser (right),
which made no errors. The error type illustrated here is Different Label and Modifier Attachment. In
the first iteration, the analyzer identifies a Different Label error (ADVP node), and in the second pass
identifies the Modifier Attachment error.
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Figure 10: An example sentence from development data – our thirteen year old son plays violin. This is
an example where our prosody-enhanced parser (left) did worse than the text-only parser (right), which
made no errors. The error type illustrated here is Different Label and Modifier Attachment. The analyzer
algorithm identifies node ADJP as Different Label in the first iteration, and in the second iteration identifies
a Modifier Attachment error with the whole thirteen year constituent.

Fluent Subset Disfluent Subset
Error Type text-only text + p best model text-only text + p best model
Clause Attach. 126 132 123 631 595 600
Co-ordination 1 2 1 10 10 5
Different label 112 116 124 288 266 300
Modifier Attach. 119 127 112 320 289 325
NP Attach. 92 89 94 332 341 283
NP Internal 71 61 65 231 213 232
PP Attach. 171 152 149 524 471 470
1-Word Phrase 334 342 328 1054 988 1030
UNSET add 86 81 64 353 352 356
UNSET move 85 93 95 466 447 439
UNSET remove 73 70 56 334 324 318
Unary 246 239 236 1088 1100 1074
VP Attach. 36 41 25 167 167 172
XoverX Unary 36 35 34 54 57 54

Table 8: Parse error counts comparison on the fluent (2029 sentences) and disfluent (3689 sentences)
subsets of the development set across three parsers. Presented here is a subset of the most frequent error
types.
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