Analysis of Disfluency in Children's Speech

Trang Tran¹, Morgan Tinkler², Gary Yeung², Abeer Alwan², Mari Ostendorf¹

¹University of Washington, ²University of California Los Angeles

Why Children's Disfluencies?

• Clinical applications: typical development vs. signs of ASD, ADHD, stuttering

- Non-clinical contexts: understanding language development, signs of uncertainty (and more) in the conversation
- Previous work:
 - disfluency research on adult speech
 - mainly read speech
 - few annotations exist

Contributions

• Novel dataset:

Disfluency-annotated spontaneous speech from children

- Initial findings from distributional and acoustic analyses
- Automatic disfluency detection results: F1=0.77

Outline

- Background
- Dataset: collection protocol & annotations
- Distributional & acoustic analyses
- Comparison with adult data: distribution & detection
- Summary

Background

• Disfluencies: filled pauses, repetitions, self-corrections

um so i so i can eat bubblegum every all the time

- common in spontaneous speech
- important for spoken language processing
- Related datasets:
 - Child speech: mostly read speech (e.g. Cleuren et al., 2008; Proenca et al., 2015)
 - Adult conversational speech: Switchboard (swbd) & CallHome (callhome)

Dataset Overview

- Part of an effort to develop robots as learning companions
 - Children ages 5–8; 15 female & 11 male
 - 2 interviews, 1 year apart
 - 7 hours of interviews annotated = 1.26 hours of children's speech
 - Teacher prompts child on explanatory discourse tasks:

"Tell me how you X?"; "Why do you X?"

"Now explain to a friend how you **X** and why they should do it"

Annotate: segment boundaries, fillers, disfluencies (as in swbd),
 plus hesitations {H}, partner back channels {PBC}

Annotation Example (X=brush your teeth)

Adult (A): Tell me how you brush your teeth.

Child (C): by brushing {H} your tooth {PBC} //

A: Okay, anything else you can tell me about how you clean your teeth?

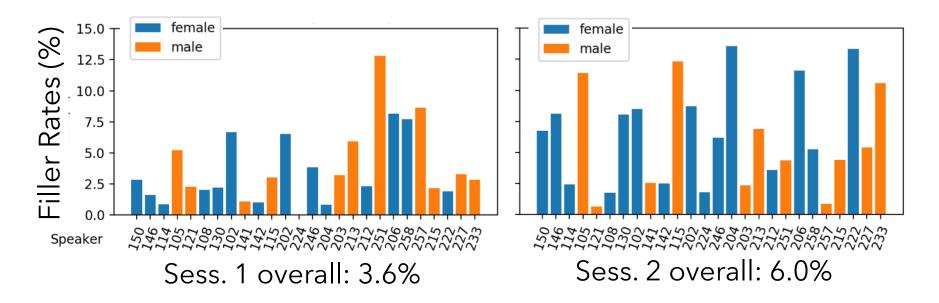
C: {F um} [you + you] get a brush [and then s- + {F um} and then put] it and [some + some] [like + like] just squeeze it / and [then + then] you put a little bit of water on it {PBC} / and then you brush your teeth / and then you spit it out /

Segmentation markers: sentence-like unit (SU) (/), turn (//) Disfluency mark-up: [reparandum + {interregnum} repair]

Annotator Agreement

- Assessed on 15 interviews (3.7K tokens)
- Boundaries:
 - 4 categories: none, +, /, //
 - {H} mapped to "none" because of low agreement
 - Cohen's kappa = 0.77
- Disfluencies:
 - 2 categories: 1 (in reparandum) and 0 (not in reparandum)
 - Cohen's kappa = 0.82

Gender Differences


	overall	female (2x15)	male (2x11)
# tokens	13,568	7,436	6,132
avg. SU len.	6.4	6.2	6.7
disf. rate	10.1%	8.5%	12.1%
filler rate	5.0%	5.4%	4.5%
`uh' rate	0.5%	0.6%	0.5%
`um' rate	2.3%	2.6%	1.9%
frag. rate	0.8%	1.2%	2.5%

Male vs. female difference is statistically significant at p < 0.05

- female children: fewer disfluencies, fragments (similar to adults)
- male children: fewer fillers

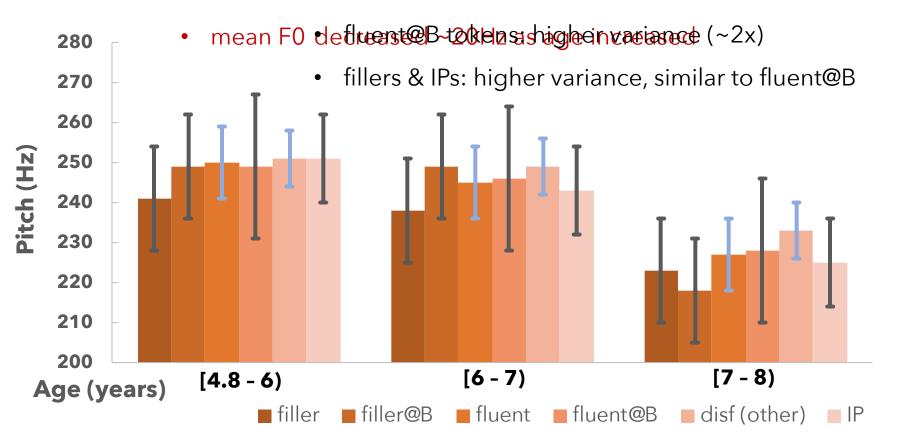
(different from adults)

Session Differences (1 Year Later)

- Filler rates: difference is statistically significant (p < 0.05)
- Disfluency rates: not significantly different (9.7% & 10.4%)

Task Differences

task	# tokens		disf. rate		Sess.
teeth 1	2,617	6.3	8.9%	3.2%)] •
colors	2,870	6.3	10.4%	3.9%	
animals	1,179	5.7	8.2%	7.5%	
teeth 2	3,496	6.6	11.3%	5.7%	
blocks	3,406	6.7	10.2%	5.8%	


1

- `animals' task seemed • more difficult (children
 - had more questions)
- may have affected •
 - other tasks: `teeth 1' vs. `teeth 2'

Acoustic Analysis

- Word-level forced alignment: TDNN trained on TBALL (Kazemzadeh et al., 2015)
 - Largest errors at turn boundaries: excluded from analysis
 - Otherwise: avg. 95 ms error
- Pitch extractor: multi-band summary correlogram (MBSC)based pitch estimation (Tan and Alwan, 2013)
 - Avg. 15 Hz (6.7% error)
- F0 averaged over word frames, normalized by speaker

Pitch (F0) Findings

Child vs. Adult Speech Corpora

	child	callhome	swbd
# tokens	13,568	43,160	64,944
avg SU len.	6.4	7.4	7.5
frag. rate	1.8%	1.2%	0.5%
disf. rate	10.1%	6.3%	6.2%
filler rate	5.0%	3.0%	3.6%
`uh' rate	0.5%	0.9%	2.7%
`um' rate	2.3%	0.6%	0.5%
avg. ratio repair: reparandum	0.87	1.13	1.25
reparanuum			

- all differences stat. significant p < 0.01
- shorter avg. SUs in children
- higher filler, disf, frag rates in children
- `um' rate > `uh' rate in children
- repair < reparandum in children

Automatic Disfluency Detection

• Disfluency detection system: LSTM-CRF (Zayats & Ostendorf,

2018) trained on SWBD

	child	callhome	swbd
F1 score	0.77	0.66	0.88

- IP detection F1 = 0.73, comparable with previous work on children's speech (Yildrim & Narayanan, 2009)
- <u>Missed</u> disfluencies: longer/more complex
- o because [you don't want people to say + when you're talking you don't want people to say] this
- and you can make different colors [at on- + out of + out of] two colors

Summary

- Novel dataset: 1.26 hours of children speech; high-quality disfluency annotations
- Findings on patterns of children's speech:
 - gender differences: disfluency & filler rates
 - disfluency statistics: children exhibit higher disfluency rates and a higher rate for the filled pause "um" (vs. adults)
- Automatic disfluency detection:
 - preliminary result on an adult-speech-trained system (F1 = 0.77)

References

- L. Cleuren, J. Duchateau, P. Ghesquiere, and H. V. hamme, "Children's oral reading corpus (CHOREC): Description and assessment of annotator agreement," in LREC, 2008.
- J. Proenca, D. Celorico, S. Candeias, C. Lopes, and F. Perdigao, "Children's reading aloud performance: a database and automatic detection of disfluencies," in Proc. Interspeech, 2015.
- S. Yildirim and S. Narayanan, "Automatic detection of disfluency boundaries in spontaneous speech of children using audio-visual information," IEEE Trans. on Audio, Speech and Language Processing, vol. 17, no. 1, pp. 2 12, 2009.
- A. Kazemzadeh, H. You, M. Iseli, B. Jones, X. Cui, M. Heritage, P. Price, E. Anderson, S. Narayanan, and A. Alwan, "TBALL Data Collection: The Making of a Young Children's Speech Corpus," in Proc. of EUROSPEECH, 2005, pp. 1581–1584.
- L. N. Tan and A. Alwan, "Multi-Band Summary Correlogram- Based Pitch Detection for Noisy Speech," Speech Communication, vol. 55, no. 7-8, pp. 841–856, 2013.
- V. Zayats and M. Ostendorf, "Robust cross-domain disfluency detection with pattern match networks," arXiv preprint arXiv:1811.07236, 2018.

Thank you for watching!

• Dataset:

www.seas.ucla.edu/spapl/shareware.html

- Contact:
 - Trang Tran <u>ttmt001@uw.edu</u>
 - Morgan Tinkler <u>mckeatink@g.ucla.edu</u>
 - Gary Yeung <u>garyyeung@g.ucla.edu</u>
 - Abeer Alwan <u>alwan@ee.ucla.edu</u>
 - Mari Ostendorf <u>ostendor@uw.edu</u>

Backup/Extra Slides

Interview Prompts

- Common questions for tasks:
 - "Tell me how you **X**?"; "Why do you **X**?
 - "Now explain to a friend how you **X** and why they should do it"
- Interview 1:
 - **X** = "brush your teeth" (teeth 1)
 - X = "mix paint to make colors" (colors)

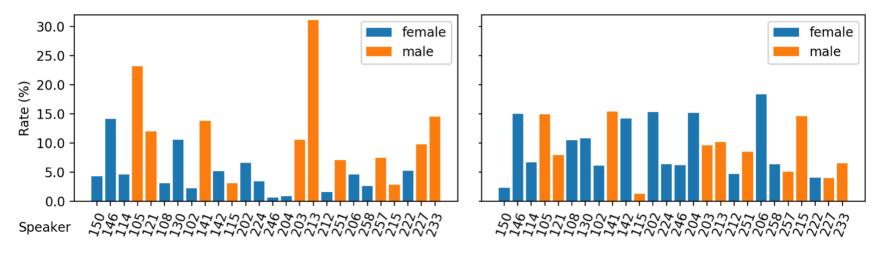
- Interview 2:
 - "which animal is the odd one out and why?" (animals)
 - **X** = "count number of cubes" (blocks)
 - **X** = "brush your teeth" (teeth 2)

Annotation Process

- Based on SWBD standard:
 - Turn boundaries: // (separation of speaker turns)
 - Sentence-like units: / (semantically coherent unit within turns)
 - Filled pauses: {F xx}
 - Disfluencies: [reparandum + {interregnum} repair]
- Extensions:
 - Instructor backchannels: {PBC}
 - Unfilled pauses/duration lengthening: {H}

Analysis Overview

- Statistical significance in difference between groups:
 - Length statistics: t-test
 - Rate statistics: Poisson e-test (Krishnamoorthy & Thomson, 2004)
- Group comparisons:
 - female vs. male
 - interview #1 vs. interview #2
 - task X vs. others


Transcription Statistics: Tasks

task	# tokens		disf. rate	
teeth 1	2,617	6.3	8.9%	3.2%
teeth 2	3,496	6.6	11.3%	5.7%
colors	2,870	6.3	10.4%	3.9%
animals	1,179	5.7	8.2%	7.5%
blocks	3,406	6.7	10.2%	5.8%

Bold: group difference is statistically significant at p < 0.05

- higher disf. and filler
 - rates in second session
- 'animals' task seems most challenging

Disfluency rates between sessions

Sess. 1 overall: 9.7%

Sess. 2 overall: 10.4%

Difference not statistically significant

Token Categories

B = boundaries /, //, +, {PBC}

fillers: fluent tokens: disfluent tokens:
1. not preceding B
3. not preceding B
5. preceding B (IP)

2. preceding B4. preceding B6. not preceding B

{F um} [it helps me by {F um} + it helps] {H} [kn- + knowing] how many there are / 1 6 6 6 6 2 3 3 5 3 3 3 4

Pitch (f0) Findings

Age Category	[4.8-6)	[6-7)	[7-8)
(1) filler	241±15 Hz	238±18 Hz	223±13 Hz
(2) filler @B	249±14 Hz	249±17 Hz	218±13 Hz
(3) fluent	250± 9 Hz	245±10 Hz	227± 9 Hz
(4) fluent @B	249±21 Hz	246±21 Hz	228±18 Hz
(5) IP	251±16 Hz	243±10 Hz	225±11 Hz
(6) other disf.	251±10 Hz	249± 8 Hz	233± 7 Hz

- mean f0 for all categories decreased as age increased
- lower standard deviation for (3) and (6)

• fluent to disfluent region: female f0 increases slightly; male f0 decreases

Pitch (F0) Analysis

- 6 token categories considered, focus on segment boundaries:
 - Fluent tokens with/without boundary
 - Fillers with/without boundary
 - Interruption points (IPs) & other tokens within reparandum
- Findings:
 - mean F0 for all categories decreased (20 Hz avg.) as age increased
 - fluent tokens at SU boundaries have higher variance (2x)
 - fillers and IPs have high variance, similar to fluent tokens at boundary

Automatic Disfluency Detection

Disfluency detection system: LSTM CRF (Zayats & Ostendorf, 2018)

trained on SWBD

	child	callhome	swbd
F1 score	0.77	0.66	0.88

 IP detection F1 = 0.73, comparable with previous work on children's speech (Yildrim & Narayanan, 2009) • <u>Missed</u> disfluencies:

longer/more complex

- [[and to + and + and] we have to clean + [if + if you + if] when it's night we have to clean] our teeths
- because [you don't want people to say + when you're talking you don't want people to say] this
- and you can make different colors [at on- + out of + out of] two colors

Table 1: Disfluency statistics in the child speech corpus: overall and comparing between genders. Bold denotes statistically significant difference between genders at p < 0.05.

	overall	female (2x15)	male (2x11)
# tokens	13,568	7436	6132
# turns	2,119	1201	918
avg. SU length	6.4.	6.2	6.7
disf. rate	10.1%	8.5%	12.1%
filler rate	5.0%	5.4%	4.5%
% filler in disf.	12.1%	13.3%	10.2%
'uh' rate	0.5%	0.6%	0.5%
% 'uh' in disf.	16.2%	13.3%	20.7%
'um' rate	2.3%	2.6%	1.9%
% 'um' in disf.	14.4%	14.4%	14.4%
frag. rate	1.8%	1.2%	2.5%

Table 2: Disfluency statistics across different tasks. Bold denotes statistically significant difference between the group and the rest of the groups at p < 0.05.

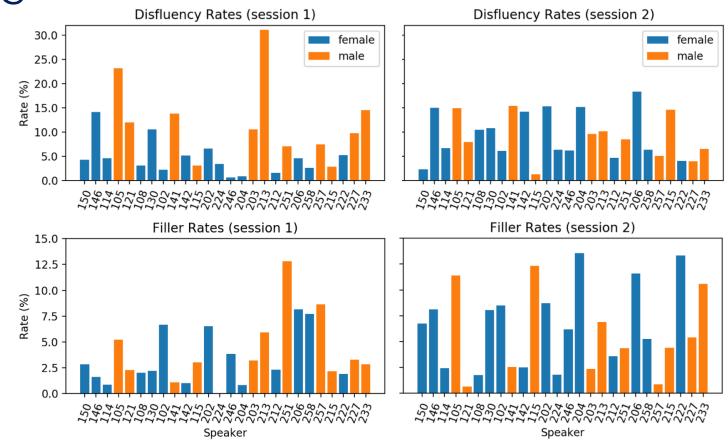
	teeth 1	teeth 2	colors	animals	blocks
# tokens	2617	3496	2870	1179	3406
# turns	416	532	453	206	512
SU len.	6.3	6.6	6.3	5.7	6.7
disf. rate	8.9%	11.3	10.4%	8.2%	10.2%
filler rate	3.2%	5.7%	3.9%	7.5%	5.8%
frag. rate	2.0%	1.8%	2.2%	1.2%	1.6%

Table 3: Average mean and standard deviation of f_0 (Hz) for each token category, separated by age.

Word Category	[4.8-6)	[6-7)	[7-8)
filler	241±15	238±18	223±13
filler@boundary	249±14	249±17	218±13
fluent	250 ± 9	245 ± 10	227 ± 9
boundary	249±21	$246{\pm}21$	228 ± 18
interruption point	251±16	243 ± 10	225 ± 11
within disf.	251 ± 10	249 ± 8	233±7

Table 4: Disfluency statistics across 3 datasets. Bold denotes statistically significant difference between child speech and adult speech at p < 0.01.

	Child	CallHome	Swbd
# tokens	13,568	43,160	64,944
# turns	2,119	5,869	8,604
avg. SU length	6.4	7.4	7.5
disf. rate	10.1%	6.3%	6.2%
'uh' rate	0.5%	0.9%	2.7%
'um' rate	2.3%	0.6%	0.5%
frag. rate	1.8%	1.2%	0.5%


Table 5: Average statistics of repair and reparandum lengths in 3 datasets. Bold denotes statistically significant difference between child speech and adult speech at p < 0.01.

	Child	CallHome	Swbd
# of disfluent regions	525	1068	2159
# non-nested disfluencies	474	922	1923
mean repair length	1.71	2.04	1.90
mean reparandum length	2.46	2.11	1.59
mean repair:reparandum ratio	0.87	1.13	1.25

Table 6: Disfluency detection scores across 3 datasets

Measure	Child	CallHome	Swbd
precision	0.85	0.66	0.93
recall	0.70	0.66	0.83
F1	0.77	0.66	0.88

Figure 1

Task Differences

Session 2 `animals' task ("which is the odd one out?") seemed

to be more difficult (children asked more questions). It had:

- higher filler rate (7.5%).
- lower disfluency rate (8.2%)
- shorter SUs (5.7 tokens)
- This task may have affected other tasks: differences in the tooth brushing results

`teeth'	disf. rate	filler rate
1	8.9%	3.2%
2	11.3%	5.7%

Contributions

• Novel dataset:

Disfluency-annotat speech from childr

- Initial findings from acoustic analyses
- Automatic disfluen

F1=0.77

