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Abstract

This paper explores contexts associated with errors in transcrip-

tion of spontaneous speech, shedding light on human perception

of disfluencies and other conversational speech phenomena. A

new version of the Switchboard corpus is provided with disflu-

ency annotations for careful speech transcripts, together with

results showing the impact of transcription errors on evaluation

of automatic disfluency detection.

Index Terms: spontaneous speech, perception, disfluencies

1. Introduction

Human errors in transcribing spontaneous speech provide in-

sights into perception of speech and how humans process spo-

ken language. In this study, we investigate mistranscriptions

of spontaneous speech, particularly the co-occurrence of errors

(or misperceptions) with disfluencies and coarse-grained word

classes. The motivation is twofold. First, the analysis of errors

can shed light on human perception of disfluencies and other

spontaneous speech phenomena in conversation. Second, a bet-

ter understanding of where errors occur improves our ability

to interpret assessments of automatic algorithms against human

transcriptions and associated findings.

Much of the work on misperception has been on read

speech in a laboratory environment, where lexical items and

grammatical structure can be controlled for. Here, we study

misperception of spontaneous speech, taking advantage of two

versions of transcriptions associated with the Switchboard cor-

pus. Our work provides new insights by averaging statistics

over many instances of different word categories. This allows

us to look at phenomena such as disfluencies, where we find

higher rates of misperception (assuming mistranscription indi-

cates misperception).

The Switchboard Corpus [1, 2] is a large collection of con-

versational telephone speech that has been annotated for a num-

ber of different types of linguistic structure. It is associated with

two sets of human transcriptions. The second represents a care-

ful correction of the first, but much of the linguistic annotation

is based on an earlier release.

We pose two hypotheses. First, we expect that words which

carry more information are less likely to be misperceived, since

they tend to be more clearly articulated. Second, we anticipate

that disfluent regions will be disproportionately associated with

misperceptions, particularly repetition disfluencies. In order to

carry out the second analysis, it is necessary to revise the ex-

isting disfluency annotation for the more careful transcriptions.

We describe an automatic procedure that gives high quality re-

sults and make the resulting annotations publicly available.

The paper makes three main contributions. First, we present

distributional analyses of the location of transcription errors that

confirm our hypotheses, but also point to informal words used

in conversation as a high error category. Second, to support

the analysis, a new version of disfluency annotated Switchboard

is released. Finally, experiments on disfluency detection show

that transcription errors impact performance estimates mainly

for repair disfluencies.

2. Human Speech Transcription

With the fast improvements in ASR system performance, there

have been multiple studies that evaluate human transcription ac-

curacy on a variety of datasets. One of the early studies on

human transcription [3] reports error rates across multiple cor-

pora with different level of difficulty and vocabulary sizes rang-

ing from 10 to 65k words. The human transcription rates in

this study varies from 0.1% (on transcribing 10 digits) to 7.4%

(keyword spotting) depending on the task and corpora. The

study also estimates the error rate for the Switchboard corpus

to be 4%, although the reference attributed this number to “per-

sonal communication.” Later, independent studies [4, 5, 6] re-

evaluated this number using professional transcribers, reporting

error rates of 5.1-5.9% and 6.8-11.3% on subsets of the Switch-

board (21k words) and CallHome (22k words) corpora, respec-

tively, which are part of NIST 2000 CTS evaluation set. The dif-

ferences in error rate correspond to how careful the transcribers

are, with a quality checking pass improving the average error

rate by 5-20% [6]. Another study by LDC on quality of the

transcription [7] reveals huge differences in the transcription er-

ror rate between very careful (4.1-4.5%) and quick transcription

(9.6%) evaluated on the RT-03 evaluation set, which contains

subsets of Fisher and Switchboard datasets (76k words in total).

The authors report that with very careful transcriptions 95%

of annotation discrepancies between multiple transcribers are

“judgment calls” due to contractions, rapid or difficult speech,

or disfluencies. The authors also notice that with the quick tran-

scriptions, the regions of disfluency are by far the most preva-

lent contributors to transcriber disagreement across the different

languages used in the study. Our study confirms these observa-

tions with quantitative analysis, but also shows high errors for

other spontaneous speech phenomena. Transcription errors in

genres other than conversational telephone speech (broadcast

news, broadcast conversation, interviews, and meetings) are ap-

proximated at rates 1.3-6.3% in English, 6.1-9.5% in Chinese

and 3.1-8.3% in Arabic.

When trying to analyze and compare human and machine

errors [6, 8] using the NIST 2000 CTS dataset, both papers re-

port function and backchannel words being dominant word cat-

egories labeled as errors, though due to a limited data size the

statistics on frequent word associated with errors can be unreli-

able. For example, the most common insertion (by human tran-

scribers) is token “i” with only 10 occurrences [9]. In compar-

ison, our work explores transcription errors using a large scale

dataset (1.3M words), which allows identification of more reli-

able patterns and more fine-grained analysis of error contexts.



3. Data

Switchboard I – Release 2 [1, 2] is a collection of about 2,400

telephone conversations between strangers, of which 1126 con-

versations were hand-annotated with disfluencies as part of the

Penn Treebank Release 3 dataset [10]. Because human tran-

scribers are imperfect, the original transcripts contained errors,

some of which were corrected in the Treebank release. Missis-

sippi State University researchers ran a clean-up project which

hand-corrected conversations, which we will refer to as MsState

transcriptions, and produced alignments between the transcripts

indicating the type of errors (missed, extra, or substituted) [11].

They did not re-annotate disfluency or parse structure.

The MsState transcription guidelines were designed for

higher consistency, so some of the transcription “errors” re-

flect a difference in transcription guidelines. In particular, the

MsState transcription guidelines differ from the original in ask-

ing the transcriber to more faithfully represent the spoken ver-

sion, e.g. by allowing more variants of words (e.g. “naw” for

“no,” “gonna” for “going to,” and “um-hum” as well as “uh-

huh”), encouraging (rather than discouraging) use of contrac-

tions, having explicit conventions for pronunciation variants

and mispronunciations, and in the form for transcribing word

fragments (“w[ent]-” vs. “w-”). The conventions for handling

word fragments also differ in terms of conventions for using

“I-” in a repetition, and in asking the transcriber to include the

fragment even if they do not know what the speaker intended,

which leads to a higher rate of word fragments in the MsState

transcripts. These differences inflate the substitution error rate,

and some are therefore ignored in our analyses.

The original work documenting the segmentation and tran-

scription correction effort [11] states that the human transcrip-

tion word error rate is reduced from approximately 10% to 2%.

Our analysis on the disfluency-annotated subset shows a word

difference rate of 5%, using the standard error rate calculation

(insertions + deletions + substitutions/total number of words in

the MsState transcript), with 2.4% associated with substitutions.

(If contractions are split, as in many language processing stud-

ies, the word difference rate is 5.2%, with 2.6% substitutions.)

The smaller error rate may be due in part to the fact that we did

not count differences due to transcription conventions as errors,

e.g. (“i-” vs “I”) and differences associated with the CONT

transcription, used e.g. for acronyms. It is also consistent with

other studies described in the previous section. If the 10% error

rate is based on the original release of the Switchboard tran-

scripts, then there would also be a difference related to the fact

that there were some corrections in the Treebank release.

This error rate includes many word fragments: the MsState

transcripts contain roughly 2.5 times more fragments than the

Treebank transcripts. Ignoring the single-phone word frag-

ments, which represent roughly 75% of the fragments added in

the retranscription, the error rate is 4.7% (5.0% with split con-

tractions). As expected, word fragments are more often missed

than inserted: 12.4% vs. 7.2%, respectively (11.8% vs. 7.0% for

split contractions).

3.1. Automatic Mapping of Disfluency Annotations

A goal of this research was to align the MsState speech

transcripts (for which there are more careful transcripts and

good time alignments) with disfluencies that had been hand-

annotated on an earlier (less faithful) version of the transcripts.

In order to transfer the disfluency annotations to the MsState

transcripts, as in the example:

Transcript Annotation

Treebank also the [ whole + whole ] thing

MsState also the [ whole {DEL the } + whole ] thing

Mapped also [ the whole + the whole ] thing

we used a multi-step process that leverages our previous

work on transcript differences [12] and avoids a costly hand-

annotation process. Each word in the original Treebank an-

notation was associated with a disfluency label based on a

begin-inside-outside (BIO) tagging scheme that accounted for

both reparandum and correction spans following [13]. Using

the MsState alignments, we automatically inserted, deleted and

substituted words in the disfluency transcripts. For each inserted

or substituted words and the window of ±2 neighbors, two ad-

ditional (temporary) labels were used: ‘D’ for representing any

state that correspond to being part of disfluency (either reparan-

dum or repair), and ‘A’ which would allow any state. In ad-

dition, we used the ‘D’ state for words surrounding deletions

that were originally annotated as disfluencies, assigned non-

disfluency state ‘O’ for words surrounding insertions that were

originally annotated as non-disfluencies, and assigned ‘A’ for all

the rest. Then, we ran automatic disfluency detection with inte-

ger linear programming constraints [14, 13] for assigning BIO

labels to the words associated with ‘A’ and ‘D’ labels. This ap-

proach allowed us to identify and add missed disfluencies and

remove hallucinated disfluencies. We refer to the resulting an-

notations as “silver” annotations, since they are strongly con-

strained by the original hand annotations. While some errors

are introduced in this process, most transcription errors are short

and isolated, so the constraints of labels on neighboring words

are reasonably strong. As discussed in the next section, analy-

sis of a subset of the test set shows that the mapped labels are

quite good. We also show, in Section 5, that the automatically

corrected data used in training a disfluency detection model (vs.

the Treebank annotations) leads to better performance.

3.2. Quality of Automatic Mappings

To assess the quality of the automatically mapped data and the

improvements in the mapping associated with the new disflu-

ency model, we initially selected 100 test sentences
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to hand

correct for disfluencies. In annotating these, we observed that

there were sentence segmentation alignment errors in some of

the cases for which missed words occurred at sentence bound-

aries. We therefore selected additional sentences to hand an-

notate, separately computing statistics for those that included

missed words at boundaries and those that did not.

Roughly 15% of the 100 test sentences appeared to have

missed words associated with a segmentation boundary. Be-

cause the available alignments for between the MsState and

Treebank transcripts did not preserve sentence boundaries, a

mechanism is needed to align deleted (missed) words to sen-

tences. Initially, we arbitrarily assigned these to the sentence

following the boundary. Examining 63 sentence pairs for possi-

ble boundary alignment problems, we found that 27% involved

assignment errors. Of the 17 sentences that had errors, two

simple reassignment rules related to unintelligible regions and

backchannels addressed 13 cases. Using these rules, the full

data set was reprocessed, and the problems seemed to be mini-

mal in the subsequent hand annotation effort.

After automatic refinement of sentence segmentation, we

annotated additional sentences, resulting in 453 sentences in to-

1

For simplicity, we use the term “sentence” rather than sentence-

like unit or slash unit (SU), which are sometimes used since they do not

always have the complete grammatical structure of written sentences.



tal. For this set, we compared the mapped silver annotations to

the gold annotations. The reparandum labels are very good with

F-score of 90.1 (90.1 precision, 90.1 recall). The silver interrup-

tion points have F1 90.6 (89.4 precision, 91.8 recall). It is diffi-

cult to use standard disfluency detection scoring to characterize

the quality of the original Treebank transcriptions because of

the word sequence differences. However, we can easily assess

the detected interruption points, and we find that the original

Treebank annotations have much lower quality, with F1 79.7

(precision 88.9, recall 72.2). Most of the difference is in recall,

consistent with the hypothesis that many transcription errors are

in disfluent (reparandum) regions.

4. Analysis of Transcription Errors

In the analyses below, we distinguish between two types of mis-

perceptions: i) a word that appears in the careful MsState tran-

script but does not appear in the Treebank transcript, referred

to as a ‘miss,’ and ii) a word that appears in the Treebank tran-

script but not in the MsState transcript, referred to as a ‘halluci-

nation.’ For differences in the two transcripts that correspond to

a substitution error, the word that is in the Treebank transcript is

counted as a hallucination, and the word that is in the MsState

transcript is counted as a miss.

With these definitions, 4.7% of the words in the MsState

transcripts are missed in the Treebank version, and 3.2% of the

words in the Treebank transcript are hallucinations. Over 80%

of the hallucinations are substitutions; i.e., words are misheard

rather than invented. Of the missed words, 55% are substitu-

tions. Ignoring substitutions, it is four times more likely for a

word to be missed than invented. Words that are invented are

often grammatical corrections, e.g. (hallucinations in brackets)

she had to be put in [a] nursing home

[it] was good talking to you.

you talked about the telephone calls [and] people coming

and soliciting [and] selling things

4.1. Word Category

We first looked at misperceptions depending on word category,

classifying words as lexical, function, fragment, and other. The

“other” category comprises words that are characteristic of con-

versational speech (vs. written text), including words that func-

tion as backchannels (uh-huh, um-hum, huh, ...), filled pauses

(um, uh), interjections (oh, ooh), and single word responses that

can play the role of a backchannel (yeah, nope, huh, nah). Our

hypothesis was that these categories would differ substantially

in the tendency for transcribers to miss or hallucinate the words.

Figures 1 and 2 show the log relative frequency of missed

and hallucinated instances of each word, with different col-

ors/symbols indicating the word category. The blue line shows

the linear regression fit to the function word statistics for words

with log frequency greater than �9, showing that on a log scale,

the relative frequency of a particular word being missed or

hallucinated is generally proportional to the frequency of that

word, for both content and function words. Word fragments

follow a similar trend with an offset associated with an over-

all higher rate, which is primarily due to transcription substitu-

tions, e.g. ‘th-’ vs. ‘thi-’. Defining an outlier as a word where

the difference from the function word prediction is more than 5

times the function word RMS error, only 2 function words and

4 content words are outliers. The exceptions involve transcrip-

tion conventions associated with reduction (‘wanna’ vs. ‘want

to’, ‘gonna’ vs. ‘going to’, ‘till’ vs. ‘until’), substitutions with

phonetically similar words (’time’ vs. ’type’), or are frequently

in a high error context (adjacent to a disfluency).

The “other” words seem to behave differently, with atypi-

cally high frequency of being misperceived. Of the 22 “other”

words with log frequency greater than �9, 10 are outliers.

Some cases involve transcription conventions (‘yep’ vs. ‘yes’),

but other errors reflect different meanings (‘uh-huh’ vs. ‘hm’).

The results also show differences between the two filled pauses:

‘um’ is infrequently missed and almost never hallucinated, un-

like ‘uh’. This is consistent with previous observations that the

two filled pauses tend to be used differently.

In general, it appears that spontaneous speech phenomena –

fragments, backchannels and interjections – are associated with

higher error rates. This may be because people are not con-

sciously aware of these phenomena (though they may uncon-

sciously use them in interpreting the intent of the interlocutor),

and thus they need more training to transcribe them. It has been

observed that transcript errors on ‘um’ and ‘uh’ are substan-

tially higher on average for those people who transcribed only

a few conversations compared to those who had transcribed a

large number [15]. We hypothesize that the same will be true

for disfluencies in speech that involve repetition or correction.

Figure 1: Log relative frequency of missed instances of differ-
ent words compared to their overall frequency in the corpus,
distinguishing between function, content, fragment, and other.

Figure 2: Log relative frequency of hallucinated instances of
different words compared to their overall frequency in the cor-
pus, distinguishing between function, content, fragment, and
other.



Table 1: Relative frequency of different disfluency types and
the PMI associated with different reparandum word error cate-
gories (m⇤ = complete miss, m = miss, h = hallucinate).

PMI(x, y)

x PM (x) (x,m⇤) (x,m) (x, h)

restart 0.003 0.49 0.64 0.60

repetition 0.032 0.61 0.41 0.22

repair 0.025 0.70 0.48 0.22

complex 0.003 0.61 0.40 0.54

fluent 0.879 -0.19 -0.08 -0.01

4.2. Disfluent Regions

We hypothesized that transcribers would be more likely to both

miss and mistranscribe words in the reparandum of a disfluency.

In Table 1, we provide the overall rate (relative frequency) of

words associated with the different disfluency types x, together

with the pointwise mutual information (PMI) of types and dif-

ferent error categories: PMI(x, c) = log[P (x|c)/P (x)]. PMI

greater than zero implies that the transcription error is more

likely to occur in region x than would be predicted by its over-

all relative frequency. Relative frequencies of words occurring

in the reparandum of different disfluency types (PM ) are com-

puted based on the MsState transcripts using the mapped dis-

fluency labels. For most disfluency types, words that are com-

pletely missed (excluding substitutions) are even more likely to

be in a disfluency reparandum.

The results show that transcription errors of all categories

are more often associated with disfluent regions than with flu-

ent speech, consistent with the overall rate of disfluencies being

slightly higher in the MsState transcripts than in the Treebank

transcripts (12.1% vs. 10.8%, respectively). As expected, the

effect is stronger for missed words than hallucinations. The

high rate of errors in restarts may be indicative of these being

less attended to by human listeners or a higher incidence of frag-

ments here, but this is also the category where inter-annotator

agreement are least reliable.

While words seem to be more frequently missed in the

reparandum of a disfluency, it may be that some disruption is

still perceived. For example, if the repetition ‘I I I’ is transcribed

as ‘I I,’ it is clear that the transcriber perceived a disfluency. Hal-

lucinations of disfluent regions are much less frequent, based

on the PMI analysis above and the analysis of interruption point

errors in Sec. 3.2. The PMI results and analysis of gold anno-

tations suggest that hallucinations associated with disfluencies

most often involve restarts.

5. Disfluency Detection Experiments

The experiments in this section leverage a text-based neural dis-

fluency detection system described in [16]. The model uses

multiple levels to process a sentence: the first level calculates

similarities for each word with words in the surrounding win-

dow; the second level uses the similarities as input to a convo-

lutional neural network and max-pooling layer that learns local

pattern matches; then we flatten the resulting outputs and con-

catenate with the word embeddings; and finally the resulting

vector is input to a bidirectional LSTM-CRF.

We train two versions of the model (one using the origi-

nal Switchboard transcripts and disfluency annotations, and the

other using the corrected transcripts with silver mapped anno-

Table 2: Disfluency detection results training and testing on dif-
ferent versions of the annotations

Training Data

Test set Transcript Original Silver

Full Original 87.80 87.23

Silver 88.67 86.96

Gold Original 88.69 88.54

Subset Silver 89.17 87.00

Gold 88.69 89.73

tations) and assess performance on the original and silver ver-

sions of the full test set plus a subset that has been fully hand-

corrected (gold). The results are presented in Table 2.

The result with the original training and test transcripts is

comparable to other reported results.
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In the gold subset, com-

paring the standard configuration to testing on gold transcripts

with silver training gives an indication of the noise in perfor-

mance estimates associated with less careful transcripts, and it

shows that prior work under-estimates performance a little. Us-

ing the silver test transcripts also under-estimates performance.

The differences are small, but the more careful annotation may

be useful in experiments that leverage acoustic cues.

6. Summary

In summary, this study has shown that human transcribers tend

to misperceive words proportionately to the log frequency of

those words, confirming the hypothesis that words which carry

more information are less likely to be misperceived. Notable ex-

ceptions include disfluencies and words that are characteristic of

spontaneous speech (filled pauses, interjections, and backchan-

nels), which are all misperceived at higher than expected rates.

The higher error rates may be due to low information load of

these words and/or lack of conscious awareness of spontaneous

speech phenomena. Lack of awareness would explain the need

for annotator training. Further study is needed. To support this

and future analyses, this work has provided a new version of

Switchboard disfluency annotations. These annotations support

more exploration of prosodic cues and disfluency detection [17].

This work was motivated in part by a prior study showing

that transcription errors impact findings related to the usefulness

of prosodic features in parsing [18], i.e., a significant fraction

of the cases where prosody seems to hurt parsing are associated

with transcription errors. The availability of the new disfluency

annotations will make it possible to explore this question for

disfluencies.

For speech recognition applications, having high accuracy

transcriptions does not seem to be critical. However, in spoken

language processing and translation, disfluencies can impact

performance. In addition, there are medical and educational

applications where detected disfluencies may provide useful in-

formation about the speakers cognitive state.
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dardized among the different studies.
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