
Leveraging Prosody for Punctuation Prediction of Spontaneous Speech

Jenny Yeonjin Cho1, Sara Ng2, Trang Tran3, Mari Ostendorf1

1University of Washington, Department of Electrical and Computer Engineering
2University of Washington, Department of Linguistics

3University of Southern California, Institute for Creative Technologies
{yeonjinc,sbng,ostendor}@uw.edu,ttran@ict.usc.edu

Abstract
This paper introduces a new neural model for punctuation pre-
diction that incorporates prosodic features to improve automatic
punctuation prediction in transcriptions of spontaneous speech.
We explore the benefit of intonation and energy features over
simply using pauses. In addition, the work poses the question
of how to represent interruption points associated with disfluen-
cies in spontaneous speech. In experiments on the Switchboard
corpus, we find that prosodic information improved punctua-
tion prediction fidelity for both hand transcripts and ASR out-
put. Explicit modeling of interruption points can benefit pre-
diction of standard punctuation, particularly if the convention
associates interruptions with commas.
Index Terms: Automatic punctuation, speech recognition,
prosody

1. Introduction
Punctuation is a crucial part of many languages, such as En-
glish, as inappropriate placement or use of punctuation marks
can semantically alter the intention of the writer. Punctuation is
not verbalized in spoken language; sentence structure is com-
municated via prosodic cues, such as pauses, duration length-
ening, and intonation associated with phrase structure and ut-
terance intent. In written text, punctuation serves as a proxy
for prosodic information. Spontaneous speech transcribed by
automatic speech recognition (ASR) systems often lacks the
punctuation marks that one would expect in written text, result-
ing in transcripts that can be difficult to comprehend correctly.
This is especially true when lack of punctuation is compounded
with automatic transcription errors. The automatic prediction
of punctuation for transcribed speech is therefore important to
represent the structure of the spoken utterance.

In more formal contexts or for read speech, punctuation can
be reasonably well predicted from language context alone (i.e.
without attending to prosodic features), particularly with power-
ful neural language models. Perhaps for that reason, most recent
punctuation prediction work has not used prosody. However,
for conversational speech, which does not adhere to written
grammatical structure and often includes disfluencies, it may be
that prosodic cues are more helpful. In addition, prosodic cues
may help compensate for confusions associated with ASR er-
rors, though the prosodic features themselves may be sensitive
to ASR errors. Pauses are reasonably reliable, but speakers use
pauses for multiple reasons, including hesitation and in putting
special emphasis on a word. Further, punctuation is not always
associated with a pause.

In this paper, we propose a mechanism for incorporating
prosodic features into a neural punctuation prediction model,
building on prior work in spoken language processing. Working
with conversational speech, our work explores two questions.

First, to what extent does prosody (beyond pauses) improve
standard punctuation prediction and are findings impacted by
ASR word errors? Second, we explore explicit prediction of in-
terruption points associated with disfluencies. There is no stan-
dard convention for punctuation associated with the interruption
point (IP) and it is often unmarked. What types of confusions
does this introduce, and might it be useful to explicitly represent
interruption points in the punctuation set? In experiments with
the Switchboard corpus, we find that there is a gain from using
acoustic-prosodic cues beyond pauses, both for manual and au-
tomatic transcripts. Commas are the most difficult to accurately
predict, and explicit modeling of interruption points does not
improve overall performance.

2. Related Work

2.1. Automatic Punctuation Prediction

Researchers have been exploring methods for automatic punc-
tuation prediction for many years [1, 2, 3, 4], since it benefits
readability for humans as well as automatic language process-
ing. Recent work has leveraged neural models. Different vari-
ants of RNNs are explored in [5, 6], and CNNs are also used in
[5]. Recent studies primarily leverage pre-trained transformers
[7, 8], which is an approach this work also takes. A comparison
of all these architectures is provided in [9].

There are some attempts to recover punctuation in other lan-
guages (see [10] for Hungarian, or [11, 12, 13] for Chinese),
however English datasets are more commonly used. The work
on English has involved a variety of speech styles, including
audio books [14, 8], broadcast speech [6], TED Talks [7], med-
ical dictation [9], and conversational speech [5, 8, 9]. Our focus
will be on conversational speech. There is no standard set of
punctuation marks. The most common set is {comma, period,
question mark}, which is used in [5]. The punctuation set from
[9] includes only {comma, period}. In contrast, [8] predicts
punctuation marks from the set {full stop, comma, question
mark, exclamation mark, semicolon, double-dash, ellipsis}. In
our work, we consider expansions of the basic set to handle
two conversational speech phenomena: incomplete sentences
and disfluency interruption points. Many studies only consider
hand transcripts; results on automatic transcripts are presented
in [6, 9], both showing lower F1 scores for ASR.

While several early studies explore the use of prosodic fea-
tures in punctuation prediction [2, 3, 14], most recent work re-
lies solely on the speech transcripts. A notable exception is [6],
which leverages features similar to the work here, but within
a hierarchical RNN framework. The key difference in our ap-
proach is the neural architecture (transformer+CNN) and inclu-
sion of pause and duration features.



2.2. Prosody in Spoken Language Processing

Prosody has been used in many spoken language processing
tasks, most notably segmentation, parsing, disfluency detec-
tion, and dialog act (DA) recognition. In a long line of work,
prosody was shown to improve topic segmentation [15, 16],
sentence boundary detection [17, 18, 19], and turn segmentation
[20]. [21] leveraged automatically predicted prosodic labels
(i.e. ToBI [22]) in a statistical parser, achieving improvements
in both parsing and disfluency detection. Similarly, in [23],
prosody was shown to benefit joint parsing and word recog-
nition, especially when sentence boundaries were unknown.
More recent work in parsing [24] modeled raw acoustic fea-
tures and showed the benefit of prosody especially in disfluent
sentences and attachment error corrections. Most works in DA
focused on sentence-level classification of a DA given a known
(segmented) utterance. In earlier work, the use of prosody was
shown to be beneficial, specifically in distinguishing questions
from statements, and backchannels from agreements [25, 26].
Using a similar approach to [24], [27] showed that prosody ben-
efited joint segmentation and DA classification, where prosody
and dialog history seem to be complementary—prosody bene-
fits segmentation while history benefits classification.

Many of these studies, however, mostly relied on hand tran-
scripts. For ASR outputs, [28] applied a CNN on segment-
level MFCCs, and improved accuracy over using only ASR out-
puts. A joint DA segmentation and classification system with
an acoustic-to-word model is described in [29], but it was not
clear where performance most suffered by using imperfect tran-
scripts. Parsing on ASR transcripts using prosody was shown to
yield more gains than parsing with only text information, as re-
ranking helps recover function words, and seems to favor gram-
matically correct utterances [30].

3. Methods
3.1. Task and Data

The dataset in our work is Switchboard (SWBD) [31], a col-
lection of spontaneous telephone speech between strangers
prompted to talk about a specific set of topics. SWBD has
been widely used for a number of speech transcription tasks,
including parsing, disfluency detection, dialog act recognition,
sentence segmentation, and of course, speech recognition. Our
work builds on a system originally designed for joint dialog act
segmentation and recognition, so we use the portion of SWBD
that was annotated with dialog acts. For training, tuning and
testing the different models, we use the split commonly used
in dialog act classification, which are defined in [32]. Since
the test set is not fully annotated with disfluencies, experiments
with interruption point prediction are reported on the subset that
is annotated, referred to as the “IP test.” Table 1 shows statistics
of the different dataset splits.

Table 1: Data statistics of SWBD

Split # Dialogs # Turns # Sentences # Tokens

train 1.1K 107K 194K 1.4M
dev 21 1.6K 3.2K 25K
full test 19 2.4K 4.1K 29K
IP test 14 1.7K 2.9K 21K

There are multiple transcriptions of the SWBD data. In this
work we use the transcripts associated with disfluency annota-

tions1 when available, so as to be able to investigate inclusion of
interruption points as a punctuation category. However, we use
the utterance times associated with the more careful Mississippi
State transcriptions [33], which have been aligned to the earlier
transcripts used in dialog act and disfluency annotation.

For the punctuation task, a sample is a speaker turn, which
is the concatenation of successive utterances from a speaker
up until the other speaker takes the floor (ignoring overlap for
backchannels). Backchannels are treated as a full turn. Ut-
terances that have no words (e.g. laughter) are removed. For
speech recognition, turn times are based on the start and end
times of the first and last utterance, respectively. Unlike some
text-based models of SWBD, we do not separate contractions
into two tokens. This convention is more consistent with the
patterns observed in the parallel acoustic features.

The ground truth punctuation labels are extracted from
SWBD with some modifications, as illustrated in Figure 1. The
disfluency span markers [ . . . ] and annotations of coordinat-
ing conjunctions {C . . .} and discourse cue words {D . . .} are
ignored in this study. The transcription conventions included
commas around all filled pauses (denoted as {F...}) and at in-
terruption points (denoted with +), which is non-standard and
artificially biases the predictions, so these were removed. The
slash (/) marks boundaries of sentence-like units, so it was as-
sociated with a period irrespective of the punctuation used with
the slash. Specific implementation of these and other mappings
are listed below.

• Commas preceding filled pauses are removed.
• Commas attached to uh and um are removed, except be-

fore you know.
• Exclamation points, ellipses, and words followed by a

plain slash are associated with periods.
• Periods are assigned to the word preceding ,/ and ./.
• Interruption points are assigned to the word preceding +.
• Incompletes are assigned to the word preceding -/.

Two series of experiments are conducted that differ in handling
of IPs. In the first series, IPs are associated with no punctu-
ation, resulting in a 4-class punctuation set (comma, period,
incomplete, question). In the second series, IPs are explicitly
predicted, resulting in a 5-class set. Words without punctuation
are labeled as “other” (O). Table 2 shows the token counts of
the 4-class punctuation types.

Figure 1: Example of text preprocessing. The top figure shows
the raw data, including original disfluency annotations; the
middle figure shows the mapping of annotations to punctuation
tags; and the bottom figure shows the resulting labels.

1https://doi.org/10.35111/gq1x-j780



Table 2: Counts of 4-class punctuation types: ‘C,’=comma;
‘P.’=period; ‘Inc-’=incomplete; ‘Q?’=question; ‘O’=no punc-
tuation. Roughly 4% of the ”O” tokens correspond to IPs.

Split C, P. Inc- Q? O Total

train 128K 127K 9.0K 7.8K 1.1M 1.4M
dev 3.2K 2.2K 144 92 19K 25K
full test 2.8K 2.7K 175 197 23K 29K
IP test 1.8K 1.9K 134 125 16K 21K

Punctuation is evaluated using macro F-scores. For the case
when the transcripts are automatically generated, there may be
words inserted or deleted. Following [9], if the automatic tran-
scription deletes a word and that word is assigned a punctuation
and the punctuation of the previously recognized word matches
the deleted word’s punctuation, then it is considered correct.
The equations in (1) show how the precision and recall are com-
puted for the prediction of question mark (“?”) in automatically
generated transcripts; metrics for other punctuations are com-
puted similarly.

P =
|TP (?)|
|? in ASR| , R =

|TP (?)|
|? in reference| (1)

3.2. Punctuation Prediction Model

The punctuation model is based on the dialog act recognition
model from [27]. Specifically, this model is an extension of
the best performing RNN encoder-decoder model with attention
in [34], combined with the CNN module for learning acoustic-
prosodic features as described in [35]. Unlike in [34], we do not
use previous turn context labels, since punctuation prediction
relies less on previous turns than dialogue act prediction. An
overview of the model is presented in Figure 2.

Briefly, the encoder-decoder model takes a turn as input,
each represented by x = [x1, . . . , xN ], where xi is the word-
level input feature vector and N is the sequence length. The
model learns to output the sequence of punctuation labels y =
[y1, . . . , yN ]. An RNN encoder produces the hidden states
h = [h1, . . . , hN ], where hi = RNN(xi, hi−1), and the RNN
decoder computes hidden states dt = RNN([ỹt−1; ct−1], dt−1)
where ỹt−1 is the embedding associated with the label yt−1 and
ct−1 is the context vector computed from the encoder hidden
states of the whole sequence, i.e. ct−1 = hαt where αt =
softmax(ut), with ut = vT tanh(W1h + W2dt + ba), i.e. the
additive attention function [36]. The predicted punctuation yt
is determined by p(yt|h, ỹ1:t−1) = softmax(Ws[ct; dt] + bs),
W1,W2, v,Ws, ba, bs are all learnable parameters.

For the model which uses all prosody features, the input
vectors xi = [ei;ϕi; si] are composed of word embeddings ei,
pause- and duration-based features ϕi, and learned energy/pitch
(E/f0) features si, which taken together represent a prosodically
contextualized word vector. The word embeddings ei are pre-
trained BERT embeddings [37] (BERT-base-uncased version),
which have been shown to perform well on a variety of NLP
tasks. Pause- and duration-based features ϕi are composed of
both raw and categorical pause durations after each word (i.e.
quantized raw durations to 6 categories as in [24]); word dura-
tions are normalized by the mean duration of the word in the
training corpus vocabulary.

The acoustic-prosodic features si are learned via a CNN
from energy (E) and pitch (f0) contours as described in [24].
Unlike in [24], where the convolution window is centered at the

Figure 2: Schematic of the punctuation model. Each turn u
is encoded via embeddings of the BERT-tokenized text, (op-
tional) pause and duration embeddings, and (optional) con-
volved acoustic features.

middle of the words, here we shift the window so that its cen-
ter is located at the end of words in order to capture the f0/E
towards the end. This is motivated by the phenomenon where
speakers change the pitch and/or energy of their voice at the end
of the word to communicate a prosodic boundary. The frame-
level energy and pitch features are extracted using Kaldi [38]
and normalized for each speaker side of the whole SWBD con-
versations. The frames corresponding to each word are then
extracted based on word-level time alignments. Each sequence
of f0/E frames corresponding to a time-aligned word (and po-
tentially its surrounding context) is convolved with N filters of
m sizes (a total of mN filters). The motivation for the multiple
filter sizes is to enable the computation of features that capture
information on different time scales. For each filter, we per-
form a 1-D convolution over the f0/E features with a stride of 1.
Each filter output is max-pooled, resulting in mN -dimensional
speech features si for word i. These prosody representations
are jointly learned with the punctuation classification objective.

In addition to a model trained on all features, we train a text-
only model and a model where ϕi contains only the categori-
cal pause feature. Neither of these comparison models encodes
acoustic features. Our best model uses 12-dimensional pause
embeddings; the CNN has N = 32 sets of filters of widths
[5, 10, 25, 50], i.e. m = 4, totaling 128 filters. The RNN is
a uni-directional GRU [39], and our parameters were learned
using Adam optimizer [40] with initial learning rate 0.0001,
halving when the performance on the dev set does not improve
every 3 epochs.

3.3. Automatic Speech Recognizer

We use an off-the-shelf ASR system, ASPiRE [41], a standard
standard benchmark for ASR systems available in Kaldi’s [38]
model suite and trained on Fisher conversational speech data
[42]. Briefly, the ASPiRE system was trained using a lattice-
free maximum mutual information (LF-MMI) criterion, with
computation efficiencies enabled by a phone-level language
model and outputs at 1/3 the standard frame rate (one frame ev-
ery 30 ms). The ASPiRE system has a reported word error rate
(WER) of 15.6% on the Hub5 ‘00 evaluation set. The WER on
our SWBD data is 21% and 24% for the development and test



sets, respectively.

4. Experiments
4.1. Standard Punctuation Prediction

Our experiments first address questions about the usefulness of
prosody with the standard punctuation set used in most work:
{period (P.), question mark (Q?), comma (C,)}, augmented by
a marker for an incomplete sentence (Inc-). Table 3 gives results
for the 4-class punctuation set on the full test set. For hand tran-
scripts, the F0 and energy features give a small benefit over the
pause in the macro scores due to improved detection of incom-
pletes. Commas are the most difficult to predict, and they are
likely more inconsistently used by human transcribers. Perfor-
mance degrades for the ASR transcripts, as one would expect,
but there is a particularly large drop for incomplete sentences,
both for precision and recall. With ASR, prosody has a bigger
impact, and the biggest impact is again for incompletes.

Table 3: F1 scores for prediction of 4-class punctuation types
on the full test set, using different features with hand vs. ASR
transcripts.

Hand C, P. Inc- Q? Macro
text only .60 .81 .80 .73 .736
pause only .60 .82 .80 .74 .739
all features .60 .82 .82 .73 .744

ASR C, P. Inc- Q? Macro
text only .53 .77 .49 .60 .597
pause only .53 .77 .52 .62 .612
all features .53 .78 .53 .62 .615

4.2. Explicit Interruption Punctuation

A second set of experiments looks at incorporating the inter-
ruption point (IP+) as an additional category. Table 4 gives re-
sults for the 5-class punctuation set on the IP test set. In the
4-class experiments, the interruption points were considered un-
marked, so interruption detection that is reasonably high preci-
sion should not impact other classes much, which is the case for
the manual transcripts. The precision drops quite a bit for the
ASR transcripts (from greater than .7 to .4), but it mainly affects
the unmarked cases. Interestingly, using the pause feature is not
helpful when predicting from the 5-class punctuation set.

Table 4: F1 scores for prediction of 5-class punctuation types
on the IP test set, using different features with hand vs. ASR
transcripts.

Hand C, P. Inc- Q? IP+ Macro
text only .63 .81 .80 .79 .77 .761
pause only .63 .82 .81 .78 .76 .759
all features .65 .82 .82 .80 .78 .773

ASR C, P. Inc- Q? IP+ Macro
text only .56 .76 .49 .65 .54 .600
pause only .56 .77 .47 .63 .54 .595
all features .57 .77 .52 .65 .55 .611

Figure 3 shows the confusion matrix for the model using
all features on the hand transcripts, where “O” corresponds to

words without punctuation. The vast majority of confusions are
associated with commas.

Figure 3: Confusion matrix of the 5-class model using all fea-
tures on hand transcripts for the IP test set.

The high confusions for the comma and no-punctuation
class for the 4-class model raises the question of whether results
could be improved by explicitly modeling interruption points
separately and then mapping them to either comma or no punc-
tuation to obtain 4 classes. Table 5 shows that separate model-
ing of interruption points improves prediction when modeled as
commas compared to as no punctuation.

Table 5: Macro F1 score of 4-class punctuation prediction on
the IP test set given hand transcripts, comparing the 4-class
model to the result for different mappings from the 5-class result
to 4 classes.

4-class 5:4-class 5:4-class
(IP test) (O) (COMMA)

text only .754 .758 .778
pause only .757 .759 .778
all features .768 .773 .793

5. Conclusions
As expected, automatically generated transcripts induce noise
that contributes to the difficulty of punctuation prediction. Use
of durational and acoustic features add computational cost, but
do not degrade overall model performance. Prosodic features
are most informative for prediction of incomplete (Inc-) bound-
aries, and in particular improve the macro F1 score for those
tokens when coupled with automatically generated transcripts.
Prediction of IPs is reasonably reliable with hand transcripts,
but about as reliable as commas given ASR transcripts. Irre-
spective of conventions for punctuation at IPs, explicit mod-
eling of interruption points can benefit prediction of standard
punctuation.
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