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ABSTRACT
From activities as simple as scheduling a meeting to those as
complex as balancing a national budget, people take stances
in negotiations and decision making. While the related areas
of subjectivity and sentiment analysis have received signifi-
cant attention, work has focused almost exclusively on text,
and much stance-taking activity is carried out verbally. This
paper investigates automatic recognition of stance-taking in
spontaneous speech. It first presents a new annotated cor-
pus of spontaneous, conversational speech designed to elicit
high densities of stance-taking at different strengths. Speaker
spurts are annotated both for strength of stance-taking behav-
ior and polarity of stance. Based on this annotated corpus,
we develop classifiers for automatic recognition of stance-
taking behavior in speech. We employ a range of lexical,
speaking style, and prosodic features in a boosting frame-
work. The classifiers achieve strong accuracies on both bi-
nary detection of stance and four-way recognition of stance
strength, well above most common class assignment. Finally,
we classify the polarity of stance-taking spurts, obtaining ac-
curacies around 80%. The best classifiers rely primarily on
word unigram features, with speaking style and prosodic fea-
tures yielding lower accuracies but still well above common
class assignment.

Index Terms— Stance recognition, spontaneous speech,
polarity recognition, corpus annotation

1. INTRODUCTION

Stances, or a speaker’s subjective attitudes or opinions about
the topic of discussion [1, 2], are an integral part of activities
involving collaboration, negotiation, and decision making. In
automatic recognition research, stance is similar to sentiment
and subjectivity, expressions of an internal mental or emo-
tional “private state” [3]. Recognition research in these areas
has grown rapidly following foundational work like [4, 5].
Generally, such work has relied on textual materials and an-
notated corpora, such as those described in [4, 5, 6]. Predom-
inantly drawing on lexical and syntactic evidence, text-based
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approaches capitalize on well-formed sentences and complete
thoughts; however, our focus is on stance-taking in spoken
interactions, which involve ambiguous, fragmentary, or dis-
fluent utterances. A much smaller amount of work has inves-
tigated issues of subjectivity, sentiment, or stance in speech,
primarily by exploiting existing conversational dyadic ([7] in
[8]) or multi-party meeting corpora ([9, 10, 11] in [12, 13, 14],
respectively), small portions of which are annotated for el-
ements of subjectivity such as agreement or arguing. Even
with speech data, many approaches to automatic subjectiv-
ity recognition have leveraged mainly word or n-gram con-
tent [15], and efforts to incorporate prosodic information have
yielded no significant improvement [16]. This is troubling, as
stance-taking in speech harnesses channels of information not
available in the textual content, including intonation, speaking
rate, emphasis, and precision of articulation [17, 18]. How-
ever, [13] found that annotators were better able to identify
opinions, especially negative opinions, when they had access
to audio recordings than when using transcripts alone.

In the current study, we exploit the ATAROS corpus [19],
a novel corpus designed explicitly to elicit high densities of
stance-taking at different strengths. This corpus further ad-
dresses limitations of prior corpora by providing finer con-
trol of audio recording conditions, speaker demographics, and
speaker dialect, as well as frequency and strength of stance-
taking, while maintaining a relatively naturalistic conversa-
tional interaction constrained by task. We describe the man-
ual annotation of the corpus for strength and polarity of stance
at the utterance level, in contrast to prior work classifying
speeches [20] or full posts [6, 21] in Congressional or on-
line debates, respectively. Based on this annotation, we per-
form automatic recognition of stance strength and polarity.
We contrast the effectiveness of lexical, speaking style, and
prosodic features for these tasks. Within a boosting frame-
work, the best results are obtained with word unigram features
across all of these tasks.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the corpus collection, transcription, and
stance annotation that form the foundation for stance recog-
nition experiments. Section 3 presents the lexical, speaking
style, and acoustic-prosodic features used to identify stance
strength and polarity. Section 4 outlines the experimental
configuration and reports and discusses the results of the



classification experiments. Finally, Section 5 offers conclu-
sions and outlines of future work.

2. CORPUS DATA COLLECTION

The experiments on stance recognition reported below rely
on the ATAROS corpus, a corpus of task-oriented sponta-
neous, conversational speech designed to elicit a high density
of stance-taking behavior at different strengths. Additional
details on the corpus and tasks can be found in [19]. Partici-
pants working in pairs complete a total of five tasks, each av-
eraging roughly ten minutes in duration. Here we focus anal-
ysis and experiments on two tasks, the Inventory task and the
Budget task, designed to elicit low and high levels of stance-
taking and engagement, respectively. In the Inventory task,
participants are asked to imagine that they are managers of
a superstore and to place products in appropriate locations in
the store. In the Budget task, participants are asked to pretend
that they are in charge of balancing an imaginary local budget
and are required to cut items across different categories.

The sample used for stance recognition experiments in-
cludes 23 dyads, comprising 26 female speakers and 20 male
speakers. All are native English-speakers age 18-75 who grew
up in the Pacific Northwest (Washington, Oregon, Idaho).
There are nine female-female dyads, five male-male dyads,
and nine mixed gender dyads. The speakers are distributed
across three age groups: roughly half are under 30, a quarter
30-60, and a quarter 60 and above. The 42 tasks include 22
Inventory and 20 Budget tasks.

All interactions are recorded in a sound-treated booth
using close-talking head-mounted microphones on separate
channels at a 44.1 kHz sampling rate. All speech is man-
ually transcribed in Praat [22] at the level of the “spurt”, a
span of speech by one speaker bounded by at least 500 ms
of silence. Spurt boundaries are manually aligned to the
audio, and speech is transcribed according to a simplified
version of the ICSI Meeting Recorder transcription guide-
lines [9], which uses conventional spelling, capitalization,
and punctuation. Filled pauses are transcribed as “um” or
“uh” (nasal/non-nasal). Disfluencies are marked with a short
dash, directly after a truncated word (e.g., categ-) or after a
space following uncompleted thoughts (e.g., I thought - ),
which may end an utterance or precede a repetition or restart
(e.g., I don’t - I’m not - I’m not sure.). A few common
vocalizations are transcribed with tags (e.g., {VOC laugh},
{VOC cough}), and notable voice qualities are marked with
a following descriptive tag (e.g., {QUAL laughing}). Words
which are noticeably emphasized are marked with an asterisk.
From this transcription, we employ the Penn Phonetics Lab
Forced Aligner (P2FA; [23]) to identify word- and phone-
level boundaries time-aligned to the audio signal.

2.1. Coarse-grained stance annotation

After manual orthographic transcription, the tasks are manu-
ally annotated at a coarse (inter-pausal) level. Each spurt is
marked with one of the stance presence/strength labels listed
below. Spurts with a discernible stance strength (label 1, 2,
or 3) are also labeled for polarity, as described below. As a
result, each spurt is marked with one of 14 possible strength-
polarity label combinations.

Stance presence/strength

0 No stance (list reading, backchannels, fact-exchange).
Ex: ”Next we have cookies.” ”Mm-hm.”

1 Weak stance (cursory agreement, suggesting solutions,
soliciting other’s opinion, bland opinion/reasoning).
Ex: ”What do you think?” ”Let’s put it here.” ”Okay,
sure.”

2 Moderate stance (more emphatic/energetic/firm ver-
sions of items in #1, disagreement, offering alterna-
tives, questioning other’s opinion). Ex: ”Uh, how
about here instead?” ”Are you sure?” ”Yes! Perfect.”

3 Strong stance (very emphatic/strong/excited versions of
items in #1-2). Ex: ”Oh my god! I can’t have that
happen on my watch!” ”Screw that!”

x Unclear (cannot be determined, excited pronunciations
of no-stance content). Ex: ”Ooh, buckets!” ”I don’t
know what that means.”

Polarity (applied to strength labels 1, 2, 3)

+ Positive (agreement, approval/affinity, willing accep-
tance, encouragement, positive evaluation, etc.). Ex:
”Sure. Good idea.” ”Yes! Perfect.”

- Negative (disagreement, disapproval/dislike, rejec-
tion/grudging acceptance, hedging, negative evalua-
tion, etc.). Ex: ”No, I don’t think so.” ”Well, I guess. If
you really want to.”

(NA) Neutral (none of the above, non-evaluative offering or
solicitation of opinions/solutions). Ex: ”What should
we cut next?” ”Let’s do this one.”

x Unclear (cannot be determined).

Both textual content and prosody are taken into account
when determining labels, as prosody can be used to enhance
or even reverse the meaning of text alone. Because strength is
relative, the scheme is applied on a per-speaker basis. Before
labeling, annotators listen to a portion of the task or a prior
task to get a general sense of each speaker’s styles and strate-
gies. For example, for speakers with small pitch and inten-
sity ranges, small deviations are more meaningful than for the



most energetic speakers, whose modulations must be more
extreme to indicate differences in stance. Annotators listen to
the audio in Praat while labeling one speaker’s transcription
and then listen again while labeling the other’s. After a task
is labeled by one annotator, a second reviews and verifies or
corrects each label while listening to the audio. Asterisks are
used to indicate uncertainty, with the second annotator pro-
viding a second opinion as needed. If the second annotator
remains uncertain about a label, a third annotator serves as a
tie-breaker. This method yields very high inter-rater agree-
ment. Weighted Cohen’s kappas with equidistant penalties
are 0.87 for stance strength labels and 0.93 for for polarity la-
bels (p = 0), with the unweighted kappa for combined labels
at 0.88 (p = 0).

3. CLASSIFICATION FEATURES

The experiments reported below exploit three main classes
of features: text-based, speaking style, and acoustic-prosodic
features. The text-based features are drawn directly from the
manual transcriptions of the spurts in the ATAROS corpus. In
particular, we employ word unigram features of the tokenized
text of the transcript, with case-folding. We conduct compar-
ative experiments with higher order word n-grams, character
n-grams (similar to [15, 16]), and stemmed text. Higher or-
der word n-grams produce no improvement over unigrams,
character n-grams perform no better than word unigrams, and
stemming yields a small reduction in classification accuracy.

For speaking style features, we compute several measures
associated with higher levels of stance-taking and engage-
ment in the different experimental tasks of the ATAROS data.
As reported in [19], tasks intended to elicit higher levels of
stance-taking and engagement exhibit increased spurt dura-
tions and greater rates of disfluent speech, as indicated by in-
creased rates of repetition, filled pauses, and truncated words.
Spurt duration is captured in terms of number of syllables,
number of words, and total duration in seconds. Finally, we
include the number of emphasized words, number of unin-
telligible spans, and number of filled pauses and truncated
words, as marked in the transcript.

For prosodic features, we extract pitch and intensity mea-
sures calculated over each full spurt and over the last 500
milliseconds of the spurt. Pitch is computed using KALDI-
pitch [24, 25], considered to be a current state-of-the-art pitch
tracker. Intensity is calculated using Praat’s [22] “To Inten-
sity...” function. All values are log-scaled and z-score nor-
malized on a per-speaker, per-task basis. For each span, we
compute maximum, minimum, mean, and off-slope for pitch
and intensity. Finally, for each spurt, we compute speaking
rate in syllables per second.

Strength Polarity
Label Proportion Label Proportion
0 27.5% Neutral 56.2%
1 48.7% Positive 37.1%
2 23.2% Negative 6.7%
3 0.6%

Table 1. Distribution of stance strength and polarity labels in
classification experiments

4. EXPERIMENTS

The following section describes our experimental configura-
tion and contrastive settings.

4.1. Experimental Configuration

All experiments employ ICSIboost [26], a freely available
public domain reimplementation of BoosTexter [27]. ICSI-
boost provides a boosting classifier based on decision stump
weak learners and supports categorical and real-valued fea-
tures as well as n-gram features over text spans. Given the
relatively small amount of data available, we chose to ap-
ply a cross-validation framework to our experiments with five
folds. No speakers appear in both training and testing for
a single fold. Based on initial exploratory experiments, we
chose to run 500 rounds of training for each fold when word
unigram features are included and 25 when they are not.

We perform experiments on automatic recognition of both
stance strength and stance polarity. The unit for annotation of
stance strength and polarity and thus experimentation is the
“spurt”, a span of speech delimited by at least 500 ms of si-
lence, as determined by manual transcription and alignment to
the audio signal. For stance recognition, we compare binary
recognition, distinguishing spurts that involve stance-taking
(stance strength levels 1-3) from those that do not (strength
level 0), with full recognition of stance strength, labeling each
spurt with a value between 0 and 3. For stance polarity, we
perform three-way classification, distinguishing neutral, neg-
ative, and positive. Spurts with stance label “x” (unclear),
are excluded from classification experiments. The distribu-
tion of labels in the stance strength and polarity classification
experiments appears in Table 1. For each of these classifica-
tion tasks, we compare the effectiveness of different feature
sets, specifically: word unigrams, speaking style features, and
acoustic prosodic features, as described in Section 3.

4.2. Stance Detection

The stance detection experiments consider the binary task of
detecting whether a spurt exhibits any stance-taking activity
(strength levels 1, 2, or 3) or not (strength level 0). The most
common class is the “stance” class, accounting for 72.6%





of the samples. We find that word unigrams on their own
achieve an accuracy of 80.5%. This represents a reduction
in error of almost 30% over most common class assignment.
A combination of prosodic and speaking style features only
achieves an accuracy of 75%, still surpassing most common
class assignment. However, no combination of features im-
proves over the word unigram features.

4.3. Stance Strength Classification

Stance strength classification experiments consider the four-
way task of recognizing the assigned stance strength level:
0, 1, 2, 3. The most frequent class is class 1 (weak stance),
which is assigned to mild agreement; this class accounts for
48.7% of instances in the data.

For word unigrams alone, we obtain an accuracy of 71%,
a 22% absolute improvement over that of most common
class assignment. Prosodic features alone reach 54.1% and
speaking style features 53.7%, well below that of the text
features, but still solidly above most common class assign-
ment. In combination, speaking style and prosodic features
reach 55.2% accuracy. However, no combination with other
features improves over word unigram feature effectiveness;
simple combination of all features achieves only 64% accu-
racy.

4.4. Stance Polarity Classification

For stance polarity classification, we consider the three-way
classification task of assigning known stance-bearing in-
stances to the classes of “neutral”, “positive”, or “negative.”
Here the most common class is “neutral”, accounting for
roughly 56% of the samples in the data.

For word unigrams alone, we achieve an accuracy of 80%,
yielding over 50% relative error reduction over most common
class assignment. For prosodic features alone, we achieve an
accuracy of 71%, a relative error reduction of 34% over most
common class assignment, but a drop of 9% absolute from the
text-based features. For speaking style features, the accuracy
is similar to the prosodic features at about 71%. Here also,
adding prosodic and speaking style features to the word uni-
gram features yields no further improvement, but only a small
decrease in accuracy to 79.3%.

4.5. Discussion

The experiments on stance recognition and polarity recogni-
tion above highlight the strong evidence provided by lexical
information, in the form of word unigrams. These features
yield the best effectiveness across all three tasks by a wide
margin, with accuracies ranging from 71% to 81%. To gain
insight into types of words indicating stance, we select uni-
grams that appear among the first 25 word unigrams selected
by the classifier across all folds in the stance strength classi-
fication task; they appear in Table 2. The unigrams include

yeah okay um hm
need maybe important good
the this could but
? , ! *

Table 2. Unigrams selected early in all folds for stance
strength recognition

yeah yes yep true
sure okay mm-hm kay
no but
the here .

Table 3. Unigrams selected early in all folds for stance polar-
ity recognition

indicators of agreement, fillers and floor holders, punctua-
tion marks, evaluative content words (“important”,”good”),
and closed class words, including modals and disjunctions.
The corresponding words for polarity classification are shown
in Table 3. This list is dominated by affirmative words but
includes two terms denoting negative polarity. Punctuation
items are correspondingly reduced. Such explicit terms will
be highly informative for polarity classification.

Outside the unigram features, the effectiveness of the
prosodic and speaking style features is much more limited.
Given the heavy reliance of the stance strength classifier
on punctuation features noted above, we speculate that this
punctuation is conveying information that would otherwise
be provided through prosodic means. For example, spurts
with interrogative and exclamatory punctuation are likely
to involve stance-taking and also to be prosodically distin-
guished. The prosodic measures would provide a (possibly
noisy) information source that would be more reliably sig-
nalled by text features when manually assigned gold-standard
punctuation is available. We tested this hypothesis by ex-
cluding punctuation features for stance strength classification
and comparing effectiveness with and without prosodic and
speaking style features. We find that four-way stance strength
prediction accuracy using only word unigram features exclud-
ing punctuation drops to 61.5%. When we now add prosodic
and speaking style features (again excluding those reliant on
punctuation), accuracy improves to 63%. This increase sug-
gests that the manually annotated punctuation features were
masking the effect of prosodic cues.

It is also interesting to note the greater effectiveness of
prosodic and speaking style features in stance polarity classi-
fication (15% absolute and 34% relative error reduction im-
provement over most common class) than in stance detection
and stance strength recognition (3-6% absolute and roughly
10% relative error reduction), in both absolute and relative
terms.



We further speculate that the current spurt segmentation,
which can both oversegment a dialog act based on pauses and
undersegment by merging multiple dialog acts, limits the ef-
fectiveness of the prosodic features. Key cues may be seg-
mented into discrete spurts, and combinations of acts, such
as backchannels or floor holders, may muddy stance-taking
cues when prosodic measures such as pitch and intensity are
aggregated across the spurt.

5. CONCLUSION & FUTURE WORK

This work has investigated stance strength and stance polar-
ity in spontaneous speech. A novel stance-annotated corpus
has been presented, describing the annotation methodology
and the strong level of interannotator agreement achieved on
this task. We have further explored automatic recognition
of stance strength and stance polarity in a boosting frame-
work, comparing textual, speaking style, and prosodic fea-
tures. Good effectiveness has been achieved on these tasks,
with accuracies from 71-81% and relative reduction in error
from common class assignment of 30-50%, depending on the
task. Word unigram features yielded the best results across
all tasks, with prosodic and speaking style features exhibiting
much more limited utility.

We plan to explore two main strategies to improve both
stance strength and stance polarity recognition. First, we plan
to exploit a more fine-grained dialog act segmentation as our
unit of analysis. The current spurt-based units, while simple
to extract, can often subsume multiple dialog acts with poten-
tially different stance-taking behaviors, for example, when a
back-channel (0 stance) is followed by a stance-taking move.
In some cases during annotation, annotators indicated a de-
sire to further segment the spurt or to assign multiple, possi-
bly opposing labels. Second, we plan to investigate alterna-
tive, novel prosodic measures to better capture the dynamics
of speech associated with stance-taking, including measures
of changes in the vowel space and measures related to the
modulation spectrum.
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