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Abstract

We present a preliminary study of an intriguing problem: predicting a character’s guiltiness in Agatha
Christie’s detective stories. Our main goal was to design character representations to be used as features
to a guilty/innocent classifier. We experimented with elementary features such as number of mentions
and typed dependencies, as well as continuous-space features derived from latent semantic analysis (LSA)
and the very recent vector space word embeddings techniques used in word2vec and GloVe. Our results,
while beating an easy baseline in most cases, indicate much more research is needed to make meaningful
conclusions.

1 Introduction

Thanks to the increasingly powerful tools that NLP provides, almost any problem involving language can
now be studied. In particular, recent years have witnessed many exciting applications in the intersection
of NLP and social science/humanities: Feng et al. used syntactic stylometry and distributional patterns to
detect deception in product reviews [1, 2], while Ott et al. looked at the imaginative elements of product
reviews to detect opinion spams [3]. An abundant source of text, literature has naturally become a rich
source for creative NLP tasks. Ashok et al. [4], for example, used statistics of lexical and syntactic rules
to predict success of literary works. Elson et al. used automatic quote attributions [5] in character conver-
sations to build a social network in literary fiction, which ultimately provided evidence that surprisingly
contradicted several literary theories [6]. Also in the literary domain, Bamman et al. modeled character
types in 18" and 19" century novels for several persona comparison tasks, which were evaluated against
preregistered literary hypotheses.

It would be intriguing to take a step further and try to predict a story’s outcome given an author’s writing
patterns, such as predicting a detective story’s ultimate perpetrator. While a good detective story usually
has an unpredictable plot, making these patterns difficult to find, there might however exist potential
writing habits that even the author herself is unaware of, whether it is the writing style around certain
characters, or the personality traits these characters might all share. The idea of this project is attempting
to identify these patterns. The rest of this document is organized as follows: Section 2 describes a recent
work most closely related to what we're exploring, the software, and the data we have available. In Section
3, we explain the approaches we explored for our “investigative” task. Section 4 presents our findings and
Section 5 proposes possible next directions to which we would expand this project. Finally, concluding
remarks are presented in Section 6.

2 Related Work, Software, and Data

To the best of our knowledge, while there have been many works applying NLP techniques to literary
analysis, no work has directly addressed the task of perpetrator character detection proposed here. Since
our goal is to detect a certain character in the story, the “criminal”, we found Bamman et al.’s work [7]
in persona modeling most related to our task. Though our goal is not necessarily to model personas, we
thought certain aspects of Bamman et al.’s work, in particular how to represent literary characters in
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topic models, might be applicable to our project.

In [7], Bamman et al. explored the problem of modeling character types, taking into account extra-
linguistic information, such as author and writing period, responsible for generating texts associated
with these characters. The target of modeling, persona, is defined as a distribution over several typed
dependency relations (roles) the characters can take on (agent, patient, possessive, and predicative). Each
tuple of (role, word) is then assumed to be drawn from a log-linear distribution with the feature set:
metadata (author), persona (latent variable), and background (word features), whose parameters are then
learned via stochastic EM and Gibbs sampling. For evaluation, the authors used as gold standard a set
of 29 hypotheses preregistered by literary scholars. These hypotheses take the form “character X is more
similar to character Y than either X or Y is to a distractor character Z”. The model was then tested by
its ability to confirm or failing to confirm the decisions:

distance(X,Y) < distance(X, Z)
distance(X,Y) < distance(Y, Z)

To scale computations to book-length documents, Bamman et al. constructed a preprocessing pipeline!,
which we found very helpful and therefore adopted as our preprocessing pipleline as well. Similar to
the authors, we used this pipeline for essential upstream tasks: POS tagging (Stanford POS tagger [8]),
parsing and dependency parsing (MaltParser [9]), and most importantly character clustering (via NER
[10] and coreference resolution). In addition, we had several toolkits readily available for learning word
embeddings, word2vec? [11] and GloVe® [12], which we used as main features in our model (details in
Section 3).

The data we used consists of Agatha Christie’s detective novels (we have not considered her short stories
or plays). Agatha Christie’s work is particularly well-suited for this study since most of her stories involve
one main criminal revealed at the end. Two texts are available free on Project Gutenberg®, many others
were fortunately donated by an acquaintance. We had in total 48 annotated novels (with characters
marked wictim or criminal, or neither), 41 of which were used for training and the rest for testing. The
total data size amounted to 4.3 million word tokens, with a vocabulary of 53,000 word types.

3 Methods and Models

Our goal of detecting the main culprit in each story is formulated as a classification task, where each
person-entity in a novel is assigned the label “guilty” (positive sample) or “innocent” (negative sample).
The focus of our work is therefore to design vector representations of characters (which we refer to as
character embeddings), to use as features to our classifier.

3.1 Data Preparation

A significant challenge in learning character embeddings is the issue of new, previously unseen characters,
much like the issue of unknown words in language models. However, in our case, we cannot simply assign
an ‘UNK’ token to new characters, since this strategy would potentially conflate new guilty and innocent
characters. On the other hand, the true identity of the criminal is often revealed in the last few chapters
of each novel, which means we would, to an extent, have access to the true labels were we to include the
last portions of each novel in learning character embeddings. With this in mind, we learned all our models
from two types of data: complete data, where we used all texts available, and incomplete data, where we

Thttp://www.ark.cs.cmu.edu/literaryCharacter/
%https://code.google.com/p/word2vec/
Shttp://nlp.stanford.edu/projects/glove/
4ht‘cp ://www.gutenberg.org
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excluded the last 15% of each story from our model learning — simulating the effect of not knowing the
true culprit until the end of the story. In other words, the complete set character embeddings should cap-
ture all information about the characters, while the incomplete set character embeddings should capture
all information up to 85% of the story the character is in. We therefore posit that the results from the
complete data models would be an upper bound to the quality of our classifier and embedding models.

Using the pipeline provided by Bamman et al. [7], we have processed stories where each token is anno-
tated with its POS tag and typed dependency tag. For named entities and pronouns (both personal and
possessive), each token is additionally assigned a character ID, which was found by clustering coreference-
resolved entities. We define a character mention as any instance labeled with a character ID, thus a
mention could refer to the proper name (and its aliases), the personal and the possessive pronouns refer-
ring to the character. In this work, we did not distinguish between mentions by the narrator and those by
a different character; mentions in narration vs. conversations were treated the same as well (though these
distinctions would be an interesting direction to explore). Feature extraction and character embeddings
are therefore learned from these instances in the text. The example below illustrates what is essentially
done to the original text: in effect, we replace each mention of the character by the corresponding char-
acter ID, annotated with additional information of the story it belongs to.

Mrs. Inglethorp greeted me with effusion. “Why, if it isn't too delightful to see you again, Mr. Hastings, after
all these years. Alfred, darling, Mr. Hastings—my husband.” | looked with some curiosity at “Alfred darling”.
He certainly struck a rather alien note. | did not wonder at John objecting to his beard. It was one of the
longest and blackest | have ever seen. He wore gold-rimmed pince-nez, and had a curious impassivity of feature.

!

CHARO0_STYLES CHARO0_STYLES® greeted me with effusion . “ Why , if it is n't too delightful to see
you again , CHAR19.STYLES CHAR19.STYLES , after all these years . CHAR33.STYLES , darling ,
CHAR19_STYLES CHAR19.STYLES - - my husband . " | looked with some curiosity at “ Alfred darling " .
He certainly struck a rather alien note . | did not wonder at CHAR46 _STYLES objecting to CHAR46 STYLES
beard . It was one of the longest and blackest | have ever seen . CHAR46_STYLES wore gold-rimmed pince-nez
, and had a curious impassivity of feature .

The example above illustrates several (interesting) issues: (1) the English honorifics Mrs. and Mr. were
treated as separate mentions from the proper nouns they are attached to; (2) the character clustering
system missed (or could not resolve) certain pronouns (He certainly struck a rather alien note...) while
(3) incorrectly resolved other pronouns (I did not wonder at John objecting to his beard... and He wore
gold-rimmed pince-nez...). Additionally, not shown here are examples where the coref system could not
recognize the same entity with different aliases®. At the time of this work, we did not have a good way of

handling these preprocessing issues’.

We describe our character feature learning in the following sections, note that all these models were learned
separately for both the complete and incomplete data. Also, we should clarify that the train/test split in
terms of stories (41/7 train/test) is only used for learning the classifier. For the embedding learning, due
to ‘UNK’ character issues described above, we used all stories in either the complete or the incomplete
texts. To be more explicit, we learn the embeddings first, then the characters in each complete/incomplete
set are split into training and testing characters for constructing and evaluating the classifier.

5Bach mention was converted to the format CHARXX_YYYYYY where XX denotes the character ID and YYYYYY denotes
the 6-letter abbreviation of the story this character belongs to. Here the excerpt was taken from The Mysterious Affair at
Styles.

6In one of the other stories, Lord Edgware Dies, Edgware’s wife’s name was Jane Wilkinson, which the system could not
recognize (understandably) as the same entity as Lady Edgware.

"Bamman et al. also noted that their coreference resolution system achieved 82% accuracy, and coreference resolution is
a difficult problem on its own, so this is probably the best we can get for now.
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3.2 Baseline and Elementary Features

Our baseline classifier is the random guesser: given a story and its characters, we randomly assign one of
the characters the label guilty. We also considered two elementary features on their own and combined:
(1) the number of mentions associated with each character (normalized) and (2) the dependency tags (as
one-hot) vector each mention is annotated with. In particular, we first surveyed our tokenized texts to
find the most common dependency tags attached to a character entity (names and pronouns included).
We then encoded each mention with a 6-dimensional vector representing the 5 most common dependency
tags, reserving an additional dimension for all other tags: [nsubj, poss, pobj, dobj, nsubjpass,other|s. To
represent the dependency features of a character as a whole, we used the sum of all the dependency vectors
of the mentions associated with the character.

3.3 Continuous-Space Embeddings of Characters
3.3.1 Latent Semantic Analysis

The first approach to modeling character features in the semantic space is by using LSA. Our LSA matrix
was constructed as follows. We first created a fixed vocabulary (which included our CHARXX_YYYYYY
notations) and performed a few preprocessing steps: (1) converted all rare words (count < 3, except if the
word is one of the CHARXX_YYYYYY tokens) to the ‘UNK’ token, and (2) converted all numbered words
to the ‘NUMBER’ token. This effectively halved our vocabulary, resulting in 24,000-26,000 word types.
Table 1 summarizes our data set characteristics. Again, note that each modeling, processing, etc. step is
done twice, once for the complete data and once for the incomplete data.

We then defined a document as a context window around each character mention. We consider 2 types
of windows: 20 words to the left and right of each mention, and 40 words to the left and right of each
mention but counting only content words®. The term-document matrix was then constructed by tallying
accumulated co-occurrence counts of vocab-words in each document. This matrix was then normalized
TF-IDF, and finally rank-reduced via SVD to dimension 100, i.e. each document (character mention)
is represented by a 100-dimensional vector!?. Similar to what we did with dependency vectors, we sum
the mention-vectors associated with each character to get the vector representation of the character. We
will refer to these vector features as “LSA” (for the 20-word context window) and “LSA.content” (for the
40-word context window). Additionally, we also considered adding the normed mentions, the dependency
vectors, or both to use as overall features representing each character.

Alternative to using each character-vector as features to our classifier, we considered using each mention-
vector as features to the classifier. In other words, instead of summing the resulted LSA/LSA.content
rank-reduced vectors, we treat them as feature vectors on their own. The reasoning behind this was that
treating each mention-vector as a feature vector gave us more data to learn from, as well as a higher
percentage of positive samples, especially since we have a class imbalance situation (see Table 1)1

We recognize the fact that these mentions are not independent, therefore also considered performing
classification+voting in experiments using mentions. Specifically, we tried thresholding on the fraction
of positive mention-classifications to get the final decision on the character’s “guiltiness”. For a certain
character Z, let us denote the number of positive predicted labels as pz and negative predicted labels as

8The full descriptions of all dependency tags can be found in the Stanford typed dependency parser manual.
http://nlp.stanford.edu/software/dependencies_manual.pdf

9We initially considered using previous/following paragraphs as contexts, but these often resulted in very few words, due
to conversations in the story.

10We wrote a Python script to construct the matrix, then performed SVD using Python’s scipy.sparse.linalg package.

1 The fact that the percentage of positive samples increased in the case of mention-vectors suggests that the number of
mentions positively correlates with positive samples
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Table 1: Summary of Data Characteristics

Complete Set | Incomplete Set

Number of Tokens 4.3 M 3.7M
Original Vocabulary 52.7 K 499 K
Processed Vocabulary 26.4 K 246 K
Number of Characters 2,937 2,736
Number of Positive Samples - Characters 148 145
(percentage guilty) (5.0%) (5.2%)
Number of Mentions 236,437 196,489
Number of Positive Samples - Mentions 30,758 23,876
(percentage guilty) (13%) (12.2%)

nyz. Then Z is marked “guilty” if p;fnz > t, where t is a threshold we varied between 0 and 0.5 in 0.1
steps.

3.3.2 Other Continuous-Space Word Embedding Tools

Recently, many powerful tools for continuous-space word representations have proven to outperform LSA
embeddings in various semantic as well as syntactic tasks, such as word2vec by Mikolov et al. [11] and
GloVe by Pennington et al. [12]. Taking advantage of these readily available toolkits, we could also
learn character embeddings in each story by relabeling each character mention in our raw text by the
CHARXX_YYYYYY notations. Each of these mentions are then treated as a word in the vocabulary by
the embedding toolkits, and we get the character embeddings by training word2vec and GloVe on our
relabeled data. For both word2vec (Skip-gram model) and GloVe, we set the vector dimension to 100
and the window to the default 11. As with the LSA and LSA.content vectors, we also considered adding
mentions, dependencies, and both to get an overall representation of our characters.

4 Experiments and Results

Since the character (mention) vectors are have continuous values while the dependency features have
discrete values, we considered two standard classifiers: a logistic regression classifier and a decision
tree. We used L2-regularization on logistic regression, where the hyperparameter C' was tuned by 5-
fold cross-validation on training data. C was varied in the range [1,1000] in 10 logarithmic steps; i.e.
C €{1,2.2,4.6,10,21.5,46.4,100, 215.4,464.2,1000}. For the decision tree, we set the maximum depth to
15 to avoid overfitting (we didn’t tune this parameter on the decision tree because of time constraints; in
fact, the only reason we considered a decision tree was because initial results with the logit were poor).

The baseline and elementary feature (mentions, dependencies) results are shown Table 2 and in Figures
1, 2. The last 2 columns of Table 2 show the confusion matrix for each complete/incomplete data set; the
figures 1 and 2 show the equivalent information in terms of precision, recall, and F1 score. The confusion

C TN | FP
matrix is displayed the form: N TP

The baseline random guesser unsurprisingly performed poorly, both in the complete and incomplete data
cases. Using only normed mentions as a feature also did poorly, in both data cases as well as both the
logit and tree classifiers. A difference in performance only arises when we add the dependency features:
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Table 2: Results on Baseline and Elementary Features

Feature Vector Classifier Model Number | Complete Data | Incomplete Data
Baseline: 381 | 7 353 | 6
N/A MO0.0 _ _
Random 23 |0 20 |1
Logistic Regression 388 | 0 359 | 0
Mentions MO0.1,LR S _—
C=1.0 23 |0 21 |0
Logistic Regression 388 | 0 359 | 0
Dependencies MO0.2,LR _— _—
C=1.0 23 |0 21 |0
Mentions Logistic Regression 388 | 0 359 | 0
MO0.3,LR _ _
+Dependencies | C=1.0 23 |0 21 |0
Decision Tree 371 | 17 334 | 25
Mentions MO0.1,DT _ _
max_depth=15 21 | 2 20 | 1
Decision Tree 364 | 24 340 | 19
Dependencies MO0.2,DT _ —
max_depth=15 18 | 5 15 | 6
Mentions Decision Tree 368 | 20 337 | 22
MO0.3,DT _ _
+Dependencies | max_depth=15 17 | 6 15 | 6
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Figure 1: Baselines, Complete Data Figure 2: Baselines, Incomplete Data
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while the logit classifier still didn’t beat the baseline, the decision tree showed some improvement in terms
of precision, recall, and F1 score in both the complete and incomplete data sets. While the absolute score
values are slightly higher in the incomplete data than in the complete data, interestingly, the confusion
matrix values suggest that this difference is probably not meaningful.

Similar results can be seen in Figures 3 through 6, which show the performance of LSA models (the corre-
sponding confusion matrices can be found in Tables 5 through 6 in the Appendix). Models M1.1 through
M1.4 are those using LSA embeddings, LSA+mentions, LSA+dependencies, and LSA+both, respectively.
Models M1.1b through M1.4b are defined similarly, except embeddings are the LSA.content ones. In
both the complete and incomplete data sets, while the logit classifier performs slightly better with the
content embeddings (Models M1.1b through M1.4b), the decision tree results suggest otherwise. Again,
it is surprising that, in terms of F1 score, the LSA-logit results are higher in the incomplete data than in
the complete ones; this is not the case for the decision tree. However, the confusion matrices imply these
differences aren’t too significant either, with the best true positive retrievals of 1 sample (complete) and 2
samples (incomplete) for the logit classifier; 4 samples (both complete, incomplete) for the decision tree.

LSA Models: Logistic Regression, Complete Data LSA Models: Logistic Regression, Incomplete Data

; ;
I Precision I Precision

[ Recall [ Recall
025 mm F1 1 025 F1
0.20 0.20}-
» P
(4 Q
5 0.15- 5 0.15F
3 3
2] 1%
0.10 4 0.10
0.05- : : 4 0.05
0.00, .
mo0 M11 M12 M13 M14 MLlb M12b M13b MLl.4b mo.0 M11 M12 M13 M1l4 M1llb M12b M1.3b M1.4b

Figure 3: LSA:logit, Complete Data Figure 4: LSA:logit, Incomplete Data

The results of classification using word2vec and GloVe embeddings are shown in Figures 7 through 10.
Models M2.1 through M2.4 are those using word2vec embeddings, with and without mentions and de-
pendency features. Models M3.1 through M3.4 are the analogous models using the GloVe embeddings.
In this case, the logit classifier seems to perform better than the decision tree across all models in the
complete data set, however not so much in the incomplete data set.

Compared to LSA, these word2vec and GloVe results look slightly better, when the classifier got any
true positives at all. Again, however, we admit that the differences might not be significant, since the
highest number of true positives found across all cases remains at 6 samples for the complete data, and
4 samples for the incomplete data. In fact, this is the same number of true positives retrieved in the
best-case elementary feature configuration (mentions+dependencies only) using a decision tree. There-
fore, in terms of F1 score, the LSA, word2vec, and GloVe all yield comparable performance to using only
mentions+dependencies as features. However, the precision was highest with word2vec embeddings alone
in the complete data set and with GloVe +mentions+dependencies in the incomplete data set.

Finally, we experimented with using mention-vectors individually as features to the classifier. The confu-
sion matrix results are shown in Table 3. Model M4.1,LR denotes using each LSA mention as a feature
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LSA Models: Decision Tree, Complete Data LSA Models: Decision Tree, Incomplete Data
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Figure 5: LSA:tree, Complete Data Figure 6: LSA:tree, Incomplete Data
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Table 3: LSA Results, Classification with Mentions

Feature Vector Classifier Model Number | Complete Data | Incomplete Data
Baseline: 381 | 7 353 | 6
N/A MO0.0 S e
Random 23 |0 20 |1
Logistic Regression 27,537 | 3 23,780 | 0
LSA M4.1,LR
C=1.0; C=1.0 5,287 | 0 3,699 | 0
Decision Tree 25,330 | 2,210 22,006 | 1,774
LSA M4.1,DT
max_depth=15 4,784 | 503 3,366 | 333
Decision Tree 180 | 208 159 | 200
LSA M4.1,vote - S
max_depth=15; t=0 4 19 4 17
LSA Logistic Regression 27,537 | 3 23,780 | 0
M4.2,LR
+Dependencies | C=1.0; C=1.0 5,287 | 0 3,699 | 0
LSA Decision Tree 25,391 | 2,149 21,936 | 1,844
M4.2,DT
+Dependencies | max_depth=15 4,778 509 3,369 330
LSA Decision Tree 175 | 213 165 | 194
M4.2,vote _ _
+Dependencies | max_depth=15; =0 4 19 ) 16
Logistic Regression 27,536 | 4 23,780 | 0
LSA.content M4.1b,LR
C=1.0; C=1.0 5,287 | 0 3,699 | 0
Decision Tree 26,078 | 1,462 21,722 | 2,058
LSA.content M4.1b,DT
max_depth=15 4,963 | 324 3,329 | 370
Decision Tree 219 | 169 167 | 192
LSA.content M4.1b,vote
max_depth=15; t=0 4 19 4 17
LSA.content Logistic Regression 27,535 | 5 23,780 | 0
M4.2b,LR
+Dependencies | C=1.0; C=1.0 5,287 | 0 3,699 | 0
LSA.content Decision Tree 26,139 | 1,401 21,732 | 2,048
M4.2b,DT
+Dependencies | max_depth=15 4,979 308 3,332 376
LSA.content Decision Tree 219 | 169 165 | 194
M4.2b,vote
+Dependencies | max_depth=15; t=0 2 21 5 16
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vector with a logit classifier. Again, the L2-regularization parameter was found by 5-fold cross validation;
in this experiment all configurations yielded best C' = 1.0, for both complete and incomplete data. Sim-
ilarly, model M4.1,DT denotes using LSA mention-vectors as feature vectors with a decision tree, max
depth 15. Model M4.1,vote denotes using LSA mention-vectors as feature vectors with a decision tree as
well, but classifications on mentions are combined to get a final decision on the character. As described in
Section 3, the threshold on the fraction of positive mentions was varied from 0 to 0.5; the table shows only
the results of the threshold yielding best F1 scores (more figures and tables regrading this experiment can
be found in the Appendix).

Interestingly, we always got the best F1 score if we set the threshold ¢ to 0; i.e. the best strategy seems to
be deciding the character is “guilty” if any of its mention was classified as positive. Unsurprisingly, this
time our recall increased significantly, up to 0.91 in the complete data and 0.81 in the incomplete data,
though precision suffered in return. In terms of F1 score, however, this strategy did not bring any win
compared to previous models using one vector per character, with the highest score of 0.2 in the complete
data and 0.15 in the incomplete data, both using the LSA.content embeddings.

Models of 4.2-varieties are defined analogously; here the mention-vectors are concatenated with the men-
tion’s dependencies. Similarly, models of M4.1b- and M4.2b-varieties also alternate between using mention-
vectors and mention-vectors with dependencies, but the embeddings were from the LSA.content configu-
ration. Note that we only did the voting scheme for the decision tree classifier, because unfortunately the
logit consistently yielded 0 scores in all cases.

Overall, the highest F1 score across all models was achieved with word2vec-only embedding for the
complete data (0.29), and with dependencies-only features in the incomplete data (0.26).

5 Future Directions

Before accepting that there aren’t any patterns pointing to the ultimate criminal'?, we think the following
directions are worth exploring.

5.1 Modifying the Classifier

We have not yet tried tuning our decision tree classifier, we could try varying the maximum depth or max-
imum nodes allowed in the tree, again using cross validation to select the best parameter. Alternatively,
we could explore a different type of classifier, suitable for both continuous and categorical features, such
as a support vector machine. In this work, we didn’t use an SVM because we would have had to tune
not only regularization parameters but also kernel types, which time did not allow. The main problem
with our poor results, however, most likely lies in the way we represent characters, especially since even
the complete data results weren’t good. We therefore would like to explore other options of designing
character embeddings, as outlined below.

5.2 Modifying Character Representations

As illustrated in the example of Section 3, our character mentions are not of the best quality due to
coreference resolution issues. We could avoid this upstream problem by defining mentions as only named
entities (i.e. excluding pronouns), but this strategy would severely decrease the amount of data available
to us. In fact, Bamman et al. [7] reported that over 70% of references to characters in books are in the
form of pronouns. Therefore, we could try looking for a better coreference resolution system, or find a
larger data source to learn from. In this work, we wanted to keep the author constant, so we have not

12 . or celebrating the fact that Agatha Christie was really good at what she did.

10
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yvet looked into other authors’ detective fiction novels. The variability in authorship might then be a
worthwhile tradeoff for our data sparsity problem.

Additionally, we could experiment with treating mentions of characters differently depending on who is
referring to them or depending on whether the mention appears in a conversation/narrative. Alternatively,
we could study the effects of varying the window sizes in LSA, word2vec, as well as GloVe training.

Another aspect we haven’t had a chance to explore is character appearance order, and how each character
develops over the course of the story. We provide some figures of character timelines (in terms of their
mentions) in the Appendix, though so far we haven’t seen any interesting patterns we could study in more
detail.

Yet as another alternative, we could explore a completely different direction by representing characters
in terms of their relations to each other. This approach was inspired by the word analogy task with the
vector offset method described by Mikolov et al. [13]: to answer the analogy question a : b — ¢ :?, one first
looks at the corresponding vector space representations wg, wp, and w, and computes y = wp — Wy + We.
The vector y is then the continuous representation most likely to answer the analogy question, so the word
is chosen by d* = argmax, m; i.e. choose the word whose vector representation has the highest
cosine similarity with y. We hypothesize that we can similarly find the criminal of a story by performing
the analogy task victim, : criminal; — victims :7.

Table 4 shows results of initial explorations in this direction. In particular, we chose the pair (victimgry Lgs:
criminalsry Lps) as the pivot pair (victimg : criminall)l3. For each new victim victim,, we look at the
characters’ vector space representations Wyictimgry rpss Weriminalsry Less Woictim, and compute the quan-
tity ¥ = Weriminalsry Lps — Woictimsry Les T Woictim, - We then iterate over characters in the same story as
victim,, and decide guilty the character whose vector representation has the highest cosine similarity with
y. We actually retrieved the top k (10, 5, and 2) most “suspicious” characters in terms of cosine similarity,
and computed how often the correct criminal appeared in top k, on average (Average Precision @k) for
each of the LSA, word2vec, and GloVe embedding. The Discounted Cumulative Gain (DCG) for each

L greli _q where rel; € {0’ 1} with 1 being

top k retrieved results was computed as in [14]: DCGy = ;) 155571y

relevant and 0 otherwise.

Table 4: Results of the Vector Offset Experiment

Complete Data Incomplete Data
LSA | word2vec | GloVe | LSA | word2vec | GloVe
Average Precision @10 0.62 0.51 0.70 | 0.35 0.54 0.38
Average DCG in top 10 | 0.33 0.34 0.43 | 0.22 0.35 0.20
Average Precision @5 0.37 0.37 0.42 | 0.26 0.33 0.18
Average DCG in top 5 0.23 0.25 0.27 | 0.18 0.22 0.11
Average Precision @2 0.13 0.13 0.18 | 0.11 0.14 0.05
Average DCG in top 2 0.10 0.09 0.13 | 0.10 0.11 0.05

As can be seen in Table 4, GloVe again seems to perform better than others in the complete data set,
while word2vec does better in the incomplete data set. Obviously, this was just a very naive exploratory
experiment; we plan to study more principled approaches of relation extraction in the future. This venue of

13 As before, STYLES denotes the story The Mysterious Affair at Styles. The choice of this particular story was arbitrary.
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relation extraction has the advantage of being relatively well-studied so far (i.e. there is enough literature
on this topic), but on the other hand would be much more involved than our simplistic and ready-to-use
toolkit approaches.

6 Conclusion

In this work, we studied Agatha Christie’s detective novels in an attempt to determine the ultimate
criminal in a story by experimenting with a few NLP methods. In particular, we designed character
embeddings to be used as feature vectors to a logistic regression classifier and a decision tree classifier,
which learn to decide whether a character is “guilty” or “innocent”. For the character embeddings,
we experimented with using rank-reduced LSA representations, as well as word2vec and GloVe trained
embeddings. All these continuous embedding vectors were then augmented with the number-of-mention
and dependencies, to study the effects of these additional elementary features on the classifier performance.
Our results so far are quite poor, with the highest F1 score of 0.29 achieved with word2vec embedding
in the complete data set, and 0.26 with dependency-only in the incomplete data set. Since we consider
the results on the complete set as our upper bound, these results, while disappointing, are perhaps not
surprising. Finally, we presented potential next steps to improve our model and hopefully get more
sensible results, with the relation extraction being the most promising venue. Overall, we are still very
much intrigued by this problem and are excited to develop better approaches to solve it.
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Appendix

In all the tables following, the confusion matrices are shown in the last 2 columns, corresponding to com-

. . TN | FP
plete and incomplete data sets. The matrices take the form N TP

Results of LSA and LSA.content embeddings using a logistic regression classifier are in Table 5. The L2
regularization parameter C was tuned by 5-fold cross validation; best C values are shown for both the
complete and incomplete data cases in the format Ceompiete = %; Cincompiete = y. Table 6 shows results
of LSA and LSA.content embeddings using a decision tree classifier. Maximum depth of tree was set
to 15 to avoid overfitting. Table 7 presents results using word2vec and GloVe embeddings for the logis-
tic regression classifier. The L2 regularization parameter C was also tuned by 5-fold cross validation and
best C values are shown as with Tables 5 and 6. Table 8 shows similar results for the decision tree classifier.

Table 3 in Section 4 presented confusion matrices for various LSA and LSA.content configurations using
mention-vectors as features. Figures 11 and 12 provide the equivalent information in terms of precision,
recall, and F1 scores. In the classification+vote case, the figures only show the best configuration (setting
threshold ¢ = 0) along side the rest of the models. Figures 13 through 16 show the Precision vs. Recall
plots and the F1 vs. threshold plots to illustrate the effects of varying the voting threshold t¢.

Finally, figures 17 through 22 show several character timeline plots. Red dots represent mentions of the
criminal while blue dots represent those of the wvictim; black dots represent other neutral characters.
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Table 5: LSA Results, Logistic Regression Classifier

Feature Vector Classifier Model Number | Complete Data | Incomplete Data

Baseline: 381 | 7 353 | 6

N/A MO0.0 _— _
Random 23 |10 20 |1
Logistic Regression 386 | 2 357 | 2

LSA M1.1 - R
C=1.0; C=1.0 23 |0 21 |0
LSA Logistic Regression M9 386 | 2 355 | 4
+Mentions C=21.5; C=4.6 ' 23 |0 21 |0
LSA Logistic Regression M3 386 | 2 352 | 7
+Dependencies C=1.0; C=1.0 ' 23 |0 19 |2
LSA +Mentions Logistic Regression M4 386 | 2 352 | 7
+Dependencies C=1.0; C=1.0 ' 23 |0 19 |2
Logistic Regression 384 | 4 355 | 4

LSA .content M1.1b S S
C=1.0; C=1.0 22 |1 20 |1
LSA.content Logistic Regression 384 | 4 355 | 4

M1.2b _ _
+Mentions C=100; C=1.0 22 |1 20 |1
LSA.content Logistic Regression 385 |3 353 | 6

M1.3b s e
+Dependencies C=1.0; C=1.0 22 |1 19 | 2
LSA.content +Mentions | Logistic Regression ML.4b 385 | 3 353 | 6
+Dependencies C=1.0; C=100 . 22 |1 19 | 2
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Table 6: LSA Results, Decision Tree Classifier

Feature Vector Classifier Model Number | Complete Data | Incomplete Data
Baseline: 381 |7 353 | 6
N/A MO.0 _—t _—t
Random 23 10 20 |1
Decision Tree 370 | 18 336 | 23
LSA M1.1 [ S R
max_depth=15 20 | 3 19 | 2
LSA Decision Tree 368 | 20 329 | 30
M1.2 _— —
+Mentions max_depth=15 18 | 5 17 | 4
LSA Decision Tree 376 | 12 335 | 24
M1.3 _— e —
+Dependencies max_depth=15 20 | 3 20 | 1
LSA +Mentions Decision Tree M4 370 | 18 337 | 22
+Dependencies max_depth=15 ' 2 | 3 2 | 1
Decision Tree 377 | 11 346 | 13
LSA . .content M1.1b —_— e
max_depth=15 19 | 4 19 | 2
LSA.content Decision Tree 375 | 13 334 | 25
M1.2b _— _—
+Mentions max_depth=15 23 | 0 19 | 2
LSA.content Decision Tree 365 | 23 345 | 14
M1.3b e — _—
+Dependencies max_depth=15 22 |1 19 | 2
LSA.content +Mentions | Decision Tree ML.4b 367 | 21 342 | 17
+Dependencies max_depth=15 ' 23 | 0 2 | 1
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Table 7: word2vec and GloVe Results, Logistic Regression Classifier

Feature Vector Classifier Model Number | Complete Data | Incomplete Data
Baseline: 381 | 7 353 | 6
N/A MO0.0 _t e
Random 23 |0 20 |1
Logistic Regression 382 | 6 354 | 5
word2vec M2.1 I i B
C=46.4; C=100 18 | 5 21 |0
word2vec Logistic Regression M2.2 383 | 5 354 | 5
+Mentions C=4.6; C=215.4 ' 2 |3 21 | 0
word2vec Logistic Regression M2.3 382 | 6 362 | 7
+Dependencies C=10; C=2.2 . 19 |4 21 |0
word2vec +Mentions | Logistic Regression M2 386 | 2 352 | 7
{ Dependencies C=10; C=2.2 ' 19 |4 21 |0
Logistic Regression 384 | 4 353 | 6
GloVe Ma3.1 - I N
C=46.4; C=21.5 20 |3 20 |1
GloVe Logistic Regression M3.2 384 | 4 354 | 5
+Mentions C=464.2; C=100 ' 2 |3 2 |1
GloVe Logistic Regression M3.3 383 | 5 354 | 5
+Dependencies C=215.4; C=21.5 . 21 | 2 19 |2
GloVe +Mentions Logistic Regression M3.4 382 | 6 354 | 5
4 Dependencies C=464.2; C=21.5 ' 21 |2 19 | 2
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Table 8: word2Vec and GloVe Results, Decision Tree Classifier

Feature Vector Classifier Model Number | Complete Data | Incomplete Data
Baseline: 381 |7 353 | 6
N/A MO0.0 _ _
Random 23 10 20 |1
Decision Tree 372 | 16 346 | 13
word2Vec M2.1
max_depth=15 17 | 6 2110
word2Vec Decision Tree M2.2 364 | 24 335 | 24
+Mentions max_depth=15 . 23 |1 0 19 | 2
word2Vec Decision Tree M2.3 375 | 13 344 | 15
+Dependencies max_depth=15 . 19 | 4 18 | 3
word2Vec +Mentions | Decision Tree Mo.4 361 | 27 337 | 22
+Dependencies max_depth=15 ' 22 |1 19 | 2
Decision Tree 377 | 11 347 | 12
GloVe M3.1 R S i R
max_depth=15 20 | 3 18 | 3
GloVe Decision Tree 366 | 22 349 | 10
M3.2 _— —
+Mentions max_depth=15 21 | 2 18 | 3
GloVe Decision Tree 372 | 16 348 | 11
M3.3 _ _
+Dependencies max_depth=15 20 | 3 20 | 1
GloVe +Mentions Decision Tree M3.4 365 | 23 345 | 14
+Dependencies max_depth=15 ' 22 |1 19 | 2
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Precision vs. Recall; Complete Data

Precision vs. Recall; Incomplete Data
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Figure 17: The Mysterious Affair at Styles Figure 18: Lord Edgware Dies
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Figure 19: Three Act Tragedy Figure 20: 4:50 from Paddington
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Figure 21: Dead Man’s Folly Figure 22: Towards Zero
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