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Abstract

This work explores constituency parsing on automatically rec-
ognized transcripts of conversational speech. The neural parser
is based on a sentence encoder that leverages word vectors con-
textualized with prosodic features, jointly learning prosodic fea-
ture extraction with parsing. We assess the utility of the prosody
in parsing on imperfect transcripts, i.e. transcripts with auto-
matic speech recognition (ASR) errors, by applying the parser
in an N-best reranking framework. In experiments on Switch-
board, we obtain 13-15% of the oracle N-best gain relative to
parsing the 1-best ASR output, with insignificant impact on
word recognition error rate. Prosody provides a significant part
of the gain, and analyses suggest that it leads to more grammat-
ical utterances via recovering function words.

Index Terms: constituency parsing, spoken language, prosody

1. Introduction

Constituency parsing is well studied on written text, includ-
ing multilingual texts [1], but work on parsing conversational
speech is more limited, and parsers trained on written text do
not work well on conversational speech. Early work in parsing
conversational speech addressed challenges not present in writ-
ten text, e.g. the lack of punctuation and the presence of disflu-
encies [2, 3]. Later studies successfully incorporated prosodic
features into parsing [4, 5, 6, 7], but the modest gains were
outstripped by advances in neural architectures and contextu-
alized word representations [8]. Additionally, most work used a
prosody representation learned from human-annotated prosodic
features, e.g. ToBI [9], which are expensive and require expert
knowledge. Recent work with neural parsers [10, 11] showed
that automatically learned prosody representations can still be
beneficial. However, these studies were done on human tran-
scripts, an unrealistic assumption for spoken language systems.

A number of studies have leveraged parsing language mod-
els in an effort to improve automatic speech recognition (ASR),
but research aimed at improving the parse of the output has
been limited. One study [12] explored joint parsing and word
recognition by re-ranking ASR hypotheses based on parse fea-
tures, showing a reduction in word error rate (WER). Another
study [13] explored parsing in the context of domain adaptation
and ASR name error detection. The authors showed that us-
ing output parse features improved re-scoring word confusion
networks and benefited the detection of ASR errors and out-of-
vocabulary regions. Recent work by [14] studied joint parsing
with disfluency detection on ASR transcripts, but they looked
at dependency parsing and the method required extending the
label set with speech-specific dependency type labels to han-
dle mismatched words. All these studies only parsed transcript
texts; prosodic features were not used.
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The work presented here fills a gap by assessing the use of
prosody in parsing ASR transcripts, where there is a question
of whether ASR errors will lead to noisy acoustic-prosodic fea-
tures. We use a state-of-the-art neural parser combined with N-
best hypothesis re-ranking, and confirm that prosody still pro-
vides a benefit in parsing conversational speech in experiments
on the Switchboard corpus [15]. In addition, we provide qual-
itative analyses of where the approach provides the most gains
and its effects on WER. The approach leverages a simple in-
tegration of prosodic and lexical word vectors in a transformer
encoder, which is a framework used in many language process-
ing systems and thus is applicable to other tasks.

2. Dataset and Metrics

The dataset in our work is Switchboard (SWBD) [15], a col-
lection of spontaneous telephone speech between strangers
prompted to talk about a specific set of topics. SWBD has
been widely used for both parsing and ASR, and to our knowl-
edge, is the only large dataset of conversational English that has
a corresponding parse treebank. We also assume known sen-
tence boundaries, as in most prior work. For training and tun-
ing the parser, we use the transcripts from standard parsing data
splits for train, development, and test sets (932, 144, 50 con-
versations), as in previous work on parsing SWBD, e.g. [2, 11].
For the re-ranking module (details in Section 3.3), we split the
parsing development set into training and development subsets
with 75%-25% ratio, in which the sentences were randomly se-
lected. This is because we are focusing on the effects of ASR
errors on a pipelined system with a trained parser (with or with-
out prosody), and we would not have parse hypotheses from the
training data (since the parser has already seen these sentences).
The test set is the same as in parsing.

Constituency parsing for written text is commonly evalu-
ated using EVALB,' i.e. reporting F1 score on predicted con-
stituent tuples (I, a,b), where ! denotes the constituent label,
and a and b denote the starting and ending indices of the con-
stituent. However, this measure only works when the predicted
parse and the reference parse have the same words. For evaluat-
ing parses on ASR transcripts, we use SParseval [16], a scoring
program similar to EVALB but with mechanisms to account for
ASR errors.> For bracket F1, SParseval requires an alignment
between word sequences of the gold and predicted parses. We
obtain this alignment with Gestalt pattern matching. SParseval
also has the option to compute dependency F1, which does not
require the word alignment, as this measure is based on head-
percolated tuples of (h, d, r) where h is the head word, d is the

'https://nlp.cs.nyu.edu/evalb
2Qur code is made publicly available at ht tps : / /github.com/
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dependent, and r is the relation between h and d. We present
F1 scores for both bracket (“brk™) and dependency (“dep”) F1.
The “dep” F1 scores are lower than the “brk™ scores, because
errors in word sequences directly contribute to lower recall.

3. System Components
3.1. Automatic Speech Recognizer

We use an off-the-shelf ASR system, ASPiRE [17], which
was trained on Fisher conversational speech data [18], avail-
able in Kaldi’s [19] model suite. Briefly, the ASPiRE system
was trained using a lattice-free maximum mutual information
(LF-MMI) criterion, with computation efficiencies enabled by
a phone-level language model and outputs at 1/3 the standard
frame rate (one frame every 30 ms). The ASPiRE system has
a reported word error rate (WER) of 15.6% on the Hub5 ‘00
evaluation set.

ASR is run on Treebank sentence units, where the segmen-
tation times are based on word times in the hand-corrected Mis-
sissippi State (MS-State) transcripts [20], using an alignment of
Treebank words to the MS transcript words. For each sentence,
we retain a set of (up to) 10 best ASR hypotheses. Shorter sen-
tences often had fewer hypotheses; 62% of the sentences have
9 or fewer hypotheses, 24% have fewer than 5. Word-level time
alignments are a by-product of the ASR system.

3.2. Parser

Our parser is composed of a multi-head self-attention (i.e. trans-
former [21]) encoder and a span-based chart decoder proposed
by [22], extended to integrate prosodic features as in [11].
The parser takes as input a sequence of 7" word-level features:
z1, -+ ,xr. For each word 7 in a sentence, the encoder maps
input x; to a query vector ¢;, a key vector k;, and a value vector
v;, which are used to compute the labeled span scores p(l, a, b).
The chart decoder then learns to output the parse tree with the
highest scores summed over all possible labeled spans.

The input vectors z; = [es; ¢s; S;] are composed of word
embeddings e;, pause- and duration-based features ¢;, and
learned energy/pitch (E/f0) features s;, which taken together
represent a prosodically contextualized word vector. The word
embeddings e; are pretrained BERT embeddings [23], which
have been shown to perform well on a variety of NLP tasks, and
also to benefit parsing conversational speech transcripts despite
the mismatch with written text [8, 11]. Pause- and duration-
based features ¢; are composed of pause durations before and
after each word; word durations are normalized by the mean
duration of the word type in the training corpus.

The acoustic-prosodic features s; are learned via a convo-
lutional neural network (CNN) from energy (E) and pitch (f0)
contours as described in [10]. Briefly, the frame-level energy
and pitch features are extracted using Kaldi [19] and normal-
ized for each speaker side of the whole SWBD conversations.
The frames corresponding to each word are then extracted based
on word-level time alignments. Each sequence of fO/E frames
corresponding to a time-aligned word (and potentially its sur-
rounding context) is convolved with NV filters of m sizes (a total
of mN filters). The motivation for the multiple filter sizes is to
enable the computation of features that capture information on
different time scales. For each filter, we perform a 1-D convolu-
tion over the fO/E features with a stride of 1. Each filter output
is max-pooled, resulting in m./V-dimensional speech features
s; for word <. These prosody representations are jointly learned
with the parsing objective.

Both parsers (with and without prosody features ¢;, s;)
are trained on parses associated with hand transcribed speech,
and hyperparameters are based on optimizing bracket F1 (from
EVALB). Figure 1 provides an overview of the parser and the
CNN module.?
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Figure 1: Parser model overview, including: a CNN module
for extracting prosodic features, a transformer encoder, and
the chart decoder parser. Word-level input features include:
word embeddings e;, pause/duration features ¢;, and acoustic-
prosodic features s; learned by a CNN module.

3.3. Ranker

Given a set of ASR hypotheses for an utterance, we parse each
hypothesis and train a ranker to select the hypothesis with the
best F1 score. This process is formulated as a binary classifica-
tion problem, e.g. as reviewed in [24]. Specifically, for each set
of hypotheses, two sentences a,b form a paired sample with
features Fop = [fia — f1b, ", fNa — fnb], Where fig is
the ¢-th feature of a sentence x € {a,b}. These features in-
clude utterance length, number of disfluent nodes, parser output
score, ASR output score, parse tree depth, total number of con-
stituents in the predicted parse, and counts of several specific
types of constituents such as EDITED (disfluent nodes), NP, VP,
etc. The prosodic cues are not used directly in ranking; they
are implicitly included in the parser score. The correspond-
ing label Y,, = 1 for the sentence pair if the F1 scores sat-
isfy F1(a) > F1(b); Yap = O otherwise. In constructing the
training (sub)set, we select the pairs with the highest F1 score
difference and 10 other random pairs. The ranker is the classi-
fier C'(+) that learns to predict Yo, = C(Fqup). For each type
of F1 score, i.e. F'1(-) € {labeled, unlabeled} x {dependency,
bracket}, we trained a separate classifier/ranker to optimize for
that score.

3We used the implementation provided at https://github.
com/trangham283/prosody_nlp/tree/master/code/
self_attn_speech_parser



At test time, two ranking methods were used: point-wise
and pair-wise. For point-wise ranking, each hypothesis sen-
tence a is considered individually to produce the probability
score P(a) = C(X.) (equivalent to a pairing of sentence a
with a sentence of all feature values 0). The best hypothesis
is chosen by @ = argmaz,P(a). For the pair-wise ranking
method, two hypotheses are selected at a time, where the hy-
pothesis for the next round of comparison is chosen based on
its higher score. We report the results from the better ranking
method in each setting.

We experimented with several types of binary classifiers:
logistic regression (LR), support vector machine classifier
(SVO), and decision tree (DT). Hyperparameters of each clas-
sifier were tuned on the development (sub)set F1 scores. While
more complex ranking approaches exist (e.g. see [24]), our fea-
ture set is small and the goal here is to demonstrate a bene-
fit from prosody when considering multiple hypotheses. More
complex ranking algorithms and/or the use of lattice ASR out-
put are left for future work.

4. Experiments and Results
4.1. Ranking configuration

The first set of experiments aimed at determining the best ranker
and ranking features on the development set. Table 1 shows la-
beled dependency (“‘dep”) and bracket (“brk™) F1 scores on the
development set, comparing different feature sets, parsing with
only transcripts vs. transcript+prosody, and ranking classifiers.
In almost all settings, the simple LR ranker outperforms SVC
and DT (not shown, but results were similar to SVC), achieving
the best dependency and bracket F1 scores of 0.520 and 0.713,
respectively.

Table 1: Labeled dependency (“dep”) and bracket (“brk”) F1
scores on the development set. ‘core set’ denotes the feature set
including: parser output score, ASR hypothesis score, sentence
length, and number of EDITED (disfluent) nodes. ‘depth’ de-
notes parse tree depth; ‘N.’ denotes the total constituent count
in the predicted parse; ‘*P’ denotes the counts of several con-
stituent types (PP, NP, VP, INTJ) in the predicted parse.

Ranker LR SvC
feature set dep brk dep brk
core set 0.514 0.701 0.513  0.699
.§ + depth 0.513  0.699 0513  0.697
‘g’ + Ne 0.513 0.700 0.512  0.698
S  +depth + N, 0512 0.698 0.513 0.649
~  +depth+ N.+*P 0518 0707 0511 0.693
core set 0.517 0.705 0.515 0.703
%‘ + depth 0.515 0.703 0.515 0.703
2 +N. 0.516 0.706 0.515 0.703
:l; + depth + N, 0.513 0.706 0.515 0.704

+depth+ N. +*P  0.520 0.713 0.512 0.697

Within the LR results, the best performing feature set con-
sists of parse score (raw and normalized by length), ASR score
(raw and normalized by length), sentence length, total num-
ber of constituents in the predicted parse, parse tree depth, and
the number of certain types of constituents in the predicted
parse: EDITED, INTJ, PP, VP, and NP. The parser trained with
prosody features slightly outperforms the text-based one: 0.713
vs. 0.707 for bracket F1, and 0.520 vs. 0.518 for dependency

F1. For the remaining results, we focus on this configuration:
LR ranker with the full feature set.

4.2. ASR hypotheses vs. 1-best and the use of prosody

Table 2 presents results comparing the baseline (1-best hypoth-
esis) with the best ranking strategy (LR ranker and full parse
feature set), and results from ranking based on the parse score
alone. Using only the parse score is worse than using the 1-
best ASR hypothesis, but re-ranking using parse features im-
proves performance for both transcript-only (“trans.”) and tran-
script+prosody (“+pros.”) parsers, in all types of evaluations
(labeled and unlabeled, dependency and bracket F1). Prosody
contributes 30-40% of the gain for the best case labeled F1
scores. For the bracket dependencies using reranking, the dif-
ferences relative to the baseline and the difference when adding
prosody are all statistically significant at p < 0.05 using the
bootstrap test [25]. F1 scores for parsing on hand transcripts
(“gold,” i.e. best-case) range from 0.91-0.94, so there is still a
large gap. Note that the gap in bracket F1 is smaller because
the parser was tuned on the EVALB (bracket F1) objective, as
is standard in parsing studies.

Table 2: FI scores on the development set across different sen-
tence selection settings.

selection by unlabeled labeled
sentence’s dep brk dep brk

1-best ASR  0.624 0.723 0.513  0.699
parse score  0.588 0.698 0.499 0.664

£ bestranker 0.627 0736 0518 0.707
T gold 0930 0933 0905 0.924
s parsescore  0.594 0.706 0.502 0.670
S bestranker  0.629 0740 0.520 0.713
+

gold 0933 0938 0909 0.928

The results on the test set (Table 3) confirm the findings
that re-ranking benefits are greater for bracket scores and that
parsers that use prosody consistently give better performance
than those without prosody. In contrast to results on the dev set,
the benefit from prosody on the test set is greater for labeled
dependencies than for labeled brackets, and for dependencies
it provides more than 70% of the gain. The combination of
re-ranking and prosody obtains 2-3% relative improvement in
F1 for the labeled cases, which corresponds to 13-15% of the
oracle possible gain with the N-best setting used here.

SParseval by default does not include EDITED (disfluent)
nodes in scoring. This could be a disadvantage for our parser
as it was trained to explicitly detect EDITED nodes, so we
also compute a modified SParseval score that considers EDITED
nodes. Scores are generally lower when EDITED nodes are in-
cluded, but findings are similar except that the labeled depen-
dency score benefits more from prosody.

Direct comparison with previous work is difficult. Work
by [13] use a different dataset; [14] use a different metric from
SParseval; and [12] use parse scoring based on the whole turn
instead of sentence units. Further, each of these works used
a different ASR system to generate automatic transcripts, dif-
ferent ranking algorithms, and potentially different time align-
ments. With this caveat, the closest point of comparison is [12],
which reports results on Switchboard using an ASR system re-



Table 3: Test set F1 scores compared between different systems.
“transcript” and “+prosody” denote results after re-ranking
outputs of the parser without and with prosody. “oracle F1” de-
notes results achieved by selecting best sentence-level F1 score
in the set of hypotheses and “gold” denotes results on hand
transcripts with the best parser (including prosody).

unlabeled labeled
dep brk dep brk

I-best ASR  0.612 0.700 0.491 0.676
transcript 0.619 0.714 0.494 0.687
+prosody 0.622 0.715 0.504 0.690

oracle F1 0.704 0.807 0.576 0.783
gold 0.934 0933 0909 0.926

porting 24.1% 1-best WER (16.2% N-best oracle WER, N=50)
on the test set. Using reference sentence segmentations (simi-
lar to our scenario), they reported an unlabeled dependency F1
score of 0.734 with the oracle result of 0.823. The higher scores
(despite the higher WER compared to our system) probably re-
flect differences in a scoring implementation that incorporates
sentence segmentation.

4.3. Effects on WER

Table 4 shows the test set WER with different parse ranking
objectives using the best (transcript+prosody) parser. Excluding
the oracle F1 case, the differences compared to the 1-best ASR
hypothesis are not significant.

Table 4: WER on the SWBD test set for different parse ranking
objectives. WER=0.19 for the 1-best baseline.

unlabeled labeled

score dep brk dep brk

transcript  0.20 0.19 020 0.19
+prosody 0.20 020 0.19 0.19
oracle F1  0.16 0.17 0.17 0.16

For further analysis, we compare hypotheses selected by the
best parser/re-ranker and the 1-best hypothesis. The best system
overall results in a slightly higher WER, but gives small F1 im-
provements in sentences where all 10 hypotheses are available,
which tend to be longer. This result could be because most of
the sentences are short (mean = 1.8-3 tokens) for those not pro-
ducing all 10 hypotheses; only longer sentences (mean = 12.7
tokens) have full 10 hypotheses.

In sentences where the prosody parser/re-ranker outper-
formed the 1-best hypothesis, 35% of these are associated with
better WER, and 23% with worse WER. In both cases, the ma-
jority of words involved are function words: 82% when WER
improved, 77% when WER degraded.

Some anecdotal (but common) examples are shown below;
bold text denotes words corrected by the prosody parser that
were otherwise wrong (strike-euttext) or missed in the 1-best
hypothesis or the transcript-only (with re-ranking) parser. The
better parser appears to favor grammatically correct sentences.

¢ imean that ’s better than george bush yex who came out

and said no

¢ do you like rap music

* it ’s bigger than just the benefits

* learn i learned not necessarily be the center of attention

Finally, we considered whether human transcription error
[10, 26] could be a confounding factor. The Switchboard parses
are based on sentence transcriptions that were later corrected,
and 27% of the test sentence have at least one transcription er-
ror, in which case the gold parse is less reliable. Analysis in [10]
indicates that prosody appeared to hurt performance in the sub-
set with errors, hypothesizing that errors in the reference parse
might explain this.

Indeed, as Table 5 shows, the bracket F1 score in sentences
without transcription errors are higher both for the parser/re-
ranker (0.707 vs. 0.660) and the 1-best hypothesis system
(0.693 vs. 0.648). Similarly, the WER is lower in sentences
without transcription errors both for the parser/re-ranker (0.181
vs. 0.237) and the 1-best hypotheses (0.169 vs. 0.235). Within
5854 test sentences, 1616 have at least one transcription error
based on the MS-State corrections.

Table 5: F1 score and WER comparing sentences with and with-
out transcription errors in the SWBD test set.

bracket F1 WER
Sentences: 1-best ranker 1-best ranker
with error 0.648 0.660 0.235 0.237

without error  0.693  0.707 0.169 0.181

5. Conclusion

We present a study on parsing ASR transcripts with a neural
parser that incorporates prosodic information. Our simple re-
ranking framework using standard parse tree features and ASR
scores obtains 13-15% of the oracle N-best gain relative to pars-
ing the 1-best ASR output with no significant impact on WER.
Further gains may be obtained with simple extensions such as
a larger N, different ranking algorithms, and integrated parsing
and sentence segmentation. The results also demonstrate how
a pipelined system is impacted by ASR errors. In all settings,
parsing using prosodic features outperforms parsing with only
text (transcript) information. When parsing improvement is ob-
served, words involved in the hypothesis selection change are
mostly function words (around 80%).

The parsing task is used here as a general means of explor-
ing the impact of realistic inputs (ASR) in speech understand-
ing. Although many language processing systems today do not
explicitly use parsers, parsing continues to be an active area of
research, in part because it is useful for interpretability studies
[27,28]. In addition, it serves as a good proxy for assessing con-
textualized word representations for a range of language under-
standing tasks [29, 30]. The work here introduces a method for
incorporating prosody into contextualization of word vectors,
jointly learning the prosodic representations in a transformer-
based encoder, within a relatively standard encoder-decoder
framework. As such, the method can easily be transferred to
other spoken language processing tasks.
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