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Analysis of Language for Dementia Diagnosis

with Focus on Alzheimer’s Disease

1 Introduction

Dementia “is characterized by a decline in memory, language, problem-solving and other
cognitive skills that affects a person’s ability to perform everyday activities.”[1] These signs
of decline are reflected in both cognitive (difficulty with planning, organizing, coordination,
and motor functions) and psychological (paranoia, agitations, hallucinations) symptoms. It
is possible to experience a single aspect of dementia (e.g. memory loss) while other cog-
nitive and psychological aspects remain intact. The variations in which aspects are most
affected contribute to the categorization of dementia types. For example, in Alzheimer’s
disease (AD), the most common type of dementia, patients suffer from cognitive decline due
to the destruction of neurons in critical parts of the brain involved in cognitive functions.
Symptoms of AD range from difficulty remembering recent information to impaired commu-
nication.

AD is estimated to be the 6th leading cause of death in the US, while there is no known
cure and limited treatment options so far [2]. It is estimated that every 66 seconds, someone
in the the US develops the disease, more than 5 million Americans are living with AD, and
by 2050 this number could rise to as high as 16 million. The costs of health care for AD are
therefore also high: in 2016, the caregivers provided approximately 18.2 billion hours, valued
at over $230 billion [1]. Clearly, assessment of dementia is an urgent, important, as well as
interesting research problem. This is crucial especially in earlier stages, potentially helping
to understand the main symptoms and to provide preventive measures for the affected pop-
ulation.

Within AD, some clinicians further differentiate between subtypes of AD based on stages of
severity: early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI),
and finally AD [2]. Other common forms of dementia include1: vascular dementia (im-
paired judgement or ability to make decisions), dementia with Lewy bodies (memory loss
and thinking problems, but more likely than people with AD to have early symptoms such
as hallucinations), Parkinson’s disease (problems with movement), frontotemporal dementia
(changes in personality and behavior, difficulty with language), and others. For this project,
I chose to focus on AD because of the available data (see Section 3) and the intriguing

1http://www.alz.org/dementia/types-of-dementia.asp

1



March 15, 2017 Trang Tran

question of language in AD. In particular, as mentioned above, it is not necessarily the case
that all AD patients experience obvious language difficulty; I was hoping to explore subtle
language cues extractable using NLP tools.

Evaluation of AD (as well as evaluation of language disorders) are still done manually for the
most part [3]. The most widely used test for dementia diagnosis is the Mini-Mental State
Examination (MMSE) [4]. The MMSE tests a wide range of cognitive functions: orientation,
registration, short-term memory, attention, calculation, visuo-spatial skills, and praxis [5],
and is administered by clinicians. However, Roark et al. [6] as well as Sitek et al. [7] have
pointed out that the MMSE is a coarse measure, providing insufficient sensitivity to subtler
manifestations of cognitive decline such as Young Onset Dementia (YOD) and MCI. In ad-
dition, though MMSE is widely used, there is little agreement regarding the boundary points
for classification of dementia vs. healthy. A variety of cut-off points have been proposed,
ranging from 21-27 on a scale of 30 maximum points [5, 8]. Yet even more problematic is
the relatively large variance in the assessment among clinicians on the same subject; Molloy
et al. [9] reported an intra-rater standard deviation of as high as 4.8 per subject. In other
words, there is a lack of ground truth for AD categorization.

From the language assessment point of view, Roark et al. [10] specifically emphasized the use
of spontaneous speech elicitation, whereas the MMSE consists of only a small portion that is
language specific. Many other researchers, such as Sajjadi et al. [11], also agree that narrative
or conversational speech is important in assessment of language deficit, especially since such
language more closely reflects communication in everyday life. Consequentially, the most
commonly used task is the Cookie Theft (Figure 1) picture description task: participants
are shown the picture and are asked to describe everything they see in the image. The
dataset (DementiaBank) I am using also has the majority of data available in this specific
task, and therefore will be my focus corpus for this study.

2 Related Work

Speech and NLP have become more relatively mature research areas over the last few decades,
yet application to the clinical domain on a large scale [6] is still quite sparse. Much like
research in the biomedical domain, there is the challenge of data availability and accessibility,
due to privacy as well as ethical reasons. Fortunately, there seems to have been a push in
application of NLP to the clinical domain, as evidenced by the increase in participation of
NLP workshops in clinical psychology.
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Figure 1: The ”Cookie Theft” picture often used to assess language conditions in clinical
settings

2.1 Diagnosis with Conversational Speech

Among the broader dementia space, Roark et al. investigated both linguistic [6] and acoustic
[10] features of speech to detect MCI subjects from control. The authors recognized the
utility of both text and speech features; in particular, noun and verb counts, syntactic com-
plexity (as measured by Yngve score [12]), as well as pause durations and rates all proved
to be useful. For Primary Progressive Aphasia (PPA) detection and subtype classification,
Fraser et al. [13, 14] also found that syntactic complexity features were among the most
useful. In addition, while acoustic features were not as useful in differentiating PPA from
control, they were important in classification of PPA’s subtypes.

Within the AD-specific domain, many researchers [15, 16] have studied a large feature set,
both lexical and acoustic, to identify AD patients from healthy controls. Orimaye et al. [15]
found most useful features to be number of predicates (raw counts and average), number of
utterances, repetitions, and revisions; while Fraser et al. [16] found pronoun-noun ratio, NP
→ PRP production rule, adverb counts, verb counts, noun counts, and Honore’s statistics to
be among the most useful. Both studies used relatively standard machine learning methods:
experimenting with logistic regression and SVM classifiers. Fraser et al. achieved a best-case
accuracy of 82% on DementiaBank.

A slight deviation from AD detection includes Yancheva et al.’s work [17] , where the au-
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thors used a large feature set (477 features) to predict MMSE scores in DementiaBank. The
authors obtained a mean absolute error of 3.83 in predicting MMSE, and found that focusing
on longitudinal inter-subject conditions improved the error to 2.91.

Most recently, Fraser et al. [18] investigated the problem of differentiating late-life AD pa-
tients from depression patients, and vice versa. The researchers found that features used
for AD detection did not result in false positives in depression patients who are otherwise
healthy; however, detecting depression in AD was much more challenging. Similar to their
previous works, Fraser et al. [18] also used a large feature set including both text and acous-
tics features, with the conclusion that, this case, acoustic features were highly important in
distinguishing people with both AD and depression from people with only AD.

In an investigation to push towards a fully automated diagnosis pipeline, Zhou et al. [19]
compared using hand-transcribed speech conversations vs. ASR outputs to detect AD in
participants. Not surprisingly, they found that accuracy is higher using perfect transcripts,
but also identified key features that have distinguishing power in both gold and ASR tran-
scripts: word length and frequency, for example. In addition, the authors observed that
accuracies can vary within a narrow band of WER; in other words, ASR transcripts with
same low WER can contain drastically different information useful in detecting AD.

2.2 Diagnosis with Written Text

So far, the language aspects of cognitive decline have been mostly evaluated through sponta-
neous speech and their resulting transcripts. Written text also is a potentially useful source
of language information to diagnose dementia, especially since text would be much easier to
process, de-identify, and available in larger quantities than speech. Early works have eluded
to written text’s potential utility: Snowdon’s famous Nun Study [20], started in 1986, re-
cruited 678 Catholic sisters, each was asked to write a short biographical sketch of her life.
Snowdon [21] later analyzed these texts, which were written in each sister’s early life, and
found strong, consistent correlations between idea density and severity of Alzheimer’s disease
pathology in the neocortex.

Several more recent works that analyzed texts for signs of dementia include Garrard et al.’s
work [22], which compared three Iris Murdoch’s novels, to find signs of cognitive decline in
her last work, Jackson’s Dilemma. Iris Murdoch was of particular interest because her AD
diagnosis was confirmed post mortem, and Jackson’s Dilemma was widely criticized by the
literary community at the time for its inconsistency and relatively lower quality. Pakho-
mov et al. [3] also examined longitudinal changes in syntactic complexity of Iris Murdoch’s
writings and found clear patterns of decreasing grammatical complexity. Le et al. [23, 24]
expanded on this line of work, including writings of Agatha Christie, who was suspected of
experiencing AD, and P.D. James, a confirmed healthy control. The authors found correla-
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tions of decreased complexity with age of the authors such as a decline in vocabulary size
and use of passives.

Most recently, Weissenbacher et al. [25] are creating a corpus of written narrative picture
descriptions from participants with AD, MCI, and control. For their initial study, the authors
performed classification using a variety of lexical, stylometric, semantic features, and subject
meta features. This is among the very few (maybe even first) works to use modern word
embeddings as one of the features. Weissenbacher et al. achieved an accuracy as high as
86% with carefully selected features, with the most important features being word2vec and
ngrams found from their ablation studies.

3 Data

The data for my experiments and analyses are from the DementiaBank2 corpus [26], and
specifically the Cookie Theft description task subset. The amount of data available in this
set is listed in Table 1. Participants are presented with the Cookie Theft picture (Figure 1),
and are asked to describe what they see. This subset includes both manual transcripts of the
clinical sessions, as well as audio recordings. For this project, however, I am only studying
language features extracted from transcriptions.

Table 1: Statistics of the DementiaBank corpus. (*) There was actually one subject (subject
172) that had a label changed from “Control” (in their first visit) to “Dementia” (in their
remaining 3 visits). The statistics here merged this subject to the “Dementia” group because
of the majority of the labels (3 out of 4) for this subject were in “Dementia”.

Control Dementia*

# subjects 98 194
# total visits (recordings) 241 307
those w/ 1 visit 25 117
those w/ 2 visits 28 53
those w/ 3 visits 28 12
those w/ 4 visits 9 9
those w/ 5 visits 8 3

The transcriptions were all manually annotated with the CHAT guideline [27], which are
quite informative. Figures 2 and 3 show an examples of transcription excerpts in this data
set. *PAR* denotes the participant’s turn, and *INV denotes the interviewer’s turn. The for-
mat [: text] denotes assimilation (as in [: going to]), [x N] stands for N repetitions,
[/] or [//] denote interruption point in disfluencies - which I am using as a marker for

2https://talkbank.org/access/DementiaBank/English/Pitt.html

5



March 15, 2017 Trang Tran

*INV: tell me all of the things you see going on .

*PAR: alright . [+ exc]

*PAR: a little girl is reaching for the <cookie> [/] cookie that the boy’s

reaching for the cookie to give to her while <the> [/] the &uh stool is

being tipped . [+ gram]

*PAR: the mother is drying the dish while the water is running out

of the spigot .

*PAR: &um let’s see . [+ exc]

*PAR: action [x 4] . [+ exc]

*PAR: no birds, geese . [+ gram]

*PAR: (..) it’s all I can see . [+ exc]

*INV: okay .

Figure 2: Excerpt transcription from a healthy control.

pauses, and [+ gram] denotes grammatical error. Details of other markers can also be found
in the CHAT manual [27].

As evident from these excerpts, the amount of data is still relatively small in NLP standards:
the average narration length of each participant in each visit is only 100 words. However, at
a quick glance, one can see there are certain intuitive differences between a healthy control’s
narration and a potential dementia patient’s, more disfluencies and interruption points stand
out as one observation in this example.

4 Feature Extraction and Analysis

I extracted common bag-of-words (BOW) and syntax features, as well as other less common
features suggested by Fraser et al. in [16]. In particular, my features are grouped in 3 sets,
all computed only for the participant’s sides: BOW features, syntax features, and length
features. The complete feature set description can be found in Table 2.

For language modeling, I used the SRILM toolkit [28]; POS tags and syntactic trees were
parsed by the Berkeley parser [29]. I am also noting a few clarifications here:

• V denotes number of words types; N denotes number of raw tokens; clean tokens are
raw tokens excluding disfluencies and pauses

• All features are computed per visit, i.e. per recording

• Rate features were computed by normalizing their counts by the number of raw tokens
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Table 2: Full feature set explored and used in this study

Group Feature Description

BOW

num tokens raw (N) number of raw tokens
num tokens clean number of clean tokens
content rate rate of content words
disfluent rate rate of disfluent words
V1 number of words appearing only once
honore Honore’s statistics, computed as logN/(1-V1/V)
ttr type:token ratio
COOKIE number of key words COOKIE
COUNTER number of key words COUNTER
CURTAIN number of key words CURTAIN
SINK number of key words SINK
STOOL number of key words STOOL
WINDOW number of key words WINDOW
lm prob language model log-probability

length

conv length conversation length: total number of turn-utterances
visit length length of visit in ms
mean length clean number of clean tokens / conv length
mean length raw number of raw tokens / conv length
verbal rate clean number of clean tokens / visit length
verbal rate raw number of raw tokens / visit length

syntax

RB counts, rates adverb counts and rates
NN counts, rates noun counts and rates
PRP counts, rates pronoun counts and rates
VB* counts, rates verb counts and rates
NP counts, rates NP constituent counts and rates
VP counts, rates VP constituent counts and rates
constituent counts, rates total constituent counts and rates
ADVP → RB counts, rates production rule ADVP → RB counts and rates
NP → PRP counts, rates production rule NP → PRP counts and rates
NP → DT NN count, rates production rule NP → DT NN counts and rates
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*PAR: (..) well I see the mother .

*PAR: what’s she doin(g) ? [+ exc]

*PAR: pourin(g) the [/] (.) the faucet down on the floor . [+ gram]

*PAR: <she got> [//] yeah she got that runnin(g) on the floor . [+ es]

*PAR: she’s wipin(g) the dishes .

*PAR: and the little boy’s gonna [: going to] break his neck (.)

tryin(g) to get into the cookie jar

*PAR: and the little girl’s yellin(g) for more

*PAR: (..) they’re headin(g) into a disaster &=laughs

*INV: +< &=laughs okay .

*INV: (...) anything else ?

*PAR: well the little boy’s gonna [: going to] &br break his neck

there if he doesn’t watch out .

Figure 3: Excerpt transcription from a dementia patient (diagnosed as ProbableAD).

• The language model used for computing lm-prob was trained on Switchboard data,
since Switchboard consists of natural speech more closely matching DementiaBank’s
data

• The Berkeley parser was also retrained on Switchboard data before applying it to
DementiaBank data

Tables 3 through 6 show the feature analysis in terms of their potential distinguishing power
between the AD and healthy control groups. Among the length features, mean length, both
raw and clean, as well as conversation length are not statistically significant (p > 0.01).
This is not surprising, since we could relatively see the length similarity from the excerpt
examples, where both AD and control subjects spent about the same amount of words to
describe the picture.

Table 3: Feature comparison between subject groups: Length features

Control Dementia
Feature Mean Std. dev Mean Std. dev tval pval

conv length 12.86 5.28 12.47 6.62 0.78 4.34E-01
visit length 57766 24348 68318 34836 -4.17 3.53E-05
verbal rate raw 2.18E-03 5.15E-04 1.84E-03 6.44E-04 6.90 1.46E-11
verbal rate clean 2.04E-03 4.96E-04 1.66E-03 6.11E-04 7.89 1.65E-14
mean length raw 9.82 2.72 9.77 2.76 0.22 8.27E-01
mean length clean 9.22 2.70 8.85 2.68 1.61 1.08E-01
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Regarding BOW features, almost all are statistically significant (p < 0.01) except for lm-
prob and ttr. What was a bit surprising was the fact that control subjects tend to have a
slightly lower content word rate than dementia patients. However, studies such as [30] have
also found that dementia patients (progressive non-fluent aphasics (PNFA), not AD though)
exhibit a decrease in the use of function words, which might explain the higher content-word
rates in this case. Other BOW differences between the groups are what one would expect:
healthy controls have less pausing and fewer disfluencies, as well as more key words that are
“obligatory” to be used in this particular picture description such as “cookie”, “stool”, and
“window”. The potential explanation for this key-word difference is that a healthy control is
much more likely to use these specific words, while a subject with dementia might substitute
“cake” for “cookie”, and “chair” for stool, exhibiting signs of decline in vocabulary specificity.

Table 4: Feature comparison between subject groups: BOW features

Control Dementia
Feature Mean Std. dev Mean Std. dev tval pval

content rate 0.68 0.14 0.73 0.19 -3.60 3.49E-04
pause rate 0.01 0.01 0.03 0.03 -8.42 3.96E-16
disfluent rate 0.18 0.10 0.24 0.15 -5.67 2.31E-08
honore 19.67 5.62 18.29 5.80 2.81 5.14E-03
lm-prob -24.09 6.17 -22.76 6.33 -2.47 1.40E-02
ttr 0.60 0.07 0.60 0.09 0.23 8.21E-01
v1 51.33 16.43 47.00 17.06 3.01 2.73E-03
COOKIE 3.17 2.18 2.01 1.92 6.52 1.80E-10
CURTAIN 0.14 0.45 0.05 0.26 3.07 2.30E-03
COUNTER 0.37 0.78 0.10 0.34 5.09 6.22E-07
SINK 2.22 1.82 1.36 1.68 5.69 2.16E-08
STOOL 2.18 1.64 1.26 1.34 7.04 6.92E-12
WINDOW 1.47 1.66 0.58 1.15 7.10 5.42E-12

Among the syntax features, raw counts don’t seem as useful as rates. Constituent counts in
particular, raw or rate, are not significantly different between the two groups, which is con-
sistent with the fact that conversation and utterance lengths are also similar among the two
groups. Among those most potentially useful, in terms of statistical significance, are adverb
rates, verb rates, noun phrase rates, and production rule NP → DT NN. This observation
is also consistent with previous feature analysis [16] and the fact that primary progressive
aphasics (another form of dementia) have verb-finding difficulties [31, 7].

9



March 15, 2017 Trang Tran

Table 5: Feature comparison between subject groups: Syntax features; raw counts

Control Dementia
Feature Mean Std. dev Mean Std. dev tval pval

RB counts 9.24 7.51 13.28 8.93 -5.76 1.40E-08
NN counts 32.21 15.81 33.65 16.72 -1.03 3.02E-01
PRP counts 9.16 6.49 10.17 7.58 -1.67 9.54E-02
VB* counts 21.45 10.53 17.38 11.36 4.34 1.67E-05
NP counts 46.30 24.41 48.62 25.45 -1.08 2.79E-01
VP counts 33.04 16.24 29.06 17.30 2.77 5.82E-03
constituent counts 249.41 125.30 240.17 127.94 0.85 3.96E-01
ADVP → RB 3.12 2.79 3.64 3.16 -2.04 4.15E-02
NP → PRP 7.40 5.36 8.71 6.73 -2.54 1.15E-02
NP → DT NN 12.29 6.21 9.20 5.55 6.06 2.70E-09

Table 6: Feature comparison between subject groups: Syntax features; rates over tokens

Control Dementia
Feature Mean Std. dev Mean Std. dev tval pval

RB counts 0.07 0.05 0.12 0.07 -8.34 6.19E-16
NN counts 0.27 0.07 0.30 0.09 -4.76 2.47E-06
PRP counts 0.07 0.02 0.08 0.03 -4.64 4.34E-06
VB* counts 0.18 0.04 0.14 0.04 8.94 6.48E-18
NP counts 0.37 0.08 0.42 0.09 -6.22 9.71E-10
VP counts 0.27 0.05 0.24 0.05 6.02 3.20E-09
constituent counts 2.01 0.14 2.03 0.16 -2.01 4.44E-02
ADVP → RB 0.02 0.02 0.03 0.02 -4.09 4.94E-05
NP → PRP 0.06 0.02 0.07 0.03 -5.72 1.76E-08
NP → DT NN 0.10 0.03 0.08 0.03 7.22 1.79E-12
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5 Classification Experiments and Results

Similar to previous works, I set up classification experiments to detect AD patients from
healthy controls. Because of the small data set, all experiments are done with 10-fold cross
validation, and I report mean F1 (dementia = class 1; control = class 0), as well as mean
accuracy scores.

I experimented with 4 types of classifiers: logistic regression, SVM with linear kernel, SVM
with RBF kernel, and decision trees. All models, except decision trees, were tuned with
regularization parameters C = {0.01, 0.1, 1, 10, 10} and the best model was selected by mean
accuracy score. The models were trained using the scikit-learn package [32].

For each model, I experimented with using all features in a certain group (BOW, length,
syntax), as well as choosing only the subset in each group shown to have statistically signif-
icant differences between two classes. These results are shown in Tables 7 through 9.

Table 7: Classification results (mean score across 10 folds) using length features; numbers
in parentheses are standard deviation across folds

All features Significant subset
Classifier F1 Accuracy F1 Accuracy

Logistic regression 0.66 (0.07) 0.61 (0.09) 0.72 (0.003) 0.56 (0.004)
SVM, linear kernel 0.68 (0.05) 0.60 (0.06) 0.66 (0.06) 0.58 (0.06)
SVM, RBF kernel 0.72 (0.01) 0.56 (0.01) 0.72 (0.01) 0.56 (0.02)
Decision tree 0.61 (0.06) 0.57 (0.06) 0.63 (0.05) 0.61 (0.04)

Table 8: Classification results (mean score across 10 folds) using BOW features; numbers
in parentheses are standard deviation across folds

All features Significant subset
Classifier F1 Accuracy F1 Accuracy

Logistic regression 0.71 (0.06) 0.68 (0.05) 0.73 (0.05) 0.68 (0.03)
SVM, linear kernel 0.73 (0.06) 0.67 (0.06) 0.73 (0.06) 0.68 (0.05)
SVM, RBF kernel 0.72 (0.02) 0.58 (0.04) 0.71 (0.05) 0.60 (0.06)
Decision tree 0.64 (0.06) 0.62 (0.07) 0.62 (0.08) 0.60 (0.08)

Finally, I also trained the 4 models on the combined feature set, with and without features
not statistically significant. Results for this experiment are shown in Table 10. Overall, using
all features extracted, even though some showed little statistical significance, still resulted
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Table 9: Classification results (mean score across 10 folds) using syntax features; numbers
in parentheses are standard deviation across folds

All features Significant subset
Classifier F1 Accuracy F1 Accuracy

Logistic regression 0.76 (0.07) 0.73 (0.06) 0.76 (0.06) 0.74 (0.05)
SVM, linear kernel 0.77 (0.06) 0.74 (0.06) 0.73 (0.08) 0.70 (0.08)
SVM, RBF kernel 0.73 (0.01) 0.59 (0.02) 0.71 (0.01) 0.56 (0.01)
Decision tree 0.70 (0.07) 0.67 (0.06) 0.68 (0.08) 0.66 (0.07)

in the best F1 score and classification accuracy. This was achieved by the logistic regression
model, with an F1 score of 0.79 and an accuracy of 0.76. This accuracy score is around 6
points below state of the art systems on this dataset [16], which achieved 0.82 accuracy using
both lexical and acoustic features. This result suggests that speech features are important
in complementing text-only features in this classification task.

Table 10: Classification results (mean score across 10 folds) using all features; numbers in
parentheses are standard deviation across folds

All features Significant subset
Classifier F1 Accuracy F1 Accuracy

Logistic regression 0.79 (0.04) 0.76 (0.04) 0.76 (0.07) 0.73 (0.07)
SVM, linear kernel 0.78 (0.05) 0.74 (0.07) 0.77 (0.05) 0.74 (0.07)
SVM, RBF kernel 0.72 (0.004) 0.56 (0.004) 0.72 (0.004) 0.56 (0.004)
Decision tree 0.66 (0.09) 0.62 (0.08) 0.67 (0.08) 0.63 (0.06)

As error analysis, I applied the best learned model on the whole data set, and looked at
cases of false positive and false negatives. There were 49 instances of false positives (healthy
classified as AD), and 68 instances of false negatives (AD classified as healthy). Personally,
the false negatives were more interesting to me, so I also looked at the ground truth diagnosis
of such instances. As noted in Table 1, there was one subject whose diagnosis changed from
control to MCI, which is the mild form of early dementia. Therefore, I suspected that most
false negative samples would likely be MCI diagnosis. However, among the 68 false negatives,
only 14 were diagnosed with MCI, while 26 were diagnosed with Probable AD, and the rest
were a mix of memory decline and vascular dementia. This was quite surprising to me, since
Probable AD is a diagnosis relatively severe into dementia. Since my text features could not
detect these patients from healthy controls, here is where speech features might have been
significantly useful.

Finally, I did a brief analysis focusing on subjects that have longitudinal data available, i.e.
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those who participated in at least 2 sessions. I computed the variance in all the features, and
ranked them by mean of the variance across sessions. Comparing these averages between
the control and AD groups, there was little to no difference regarding which features varied
more for one group vs. the other. Specifically, both groups showed large average variance in
visit length and conversation length, while both also showed small average variance in verbal
rates (both raw and clean).

6 Conclusion

In this project, I analyzed a variety of text features to detect AD patients from healthy
controls, guided by previous literature on this task using the DementiaBank dataset. In
attempting to reproduce some aspects of previous works, my findings are consistent with
other researchers in terms of feature utility and the optimistic potential of using NLP for
dementia diagnosis. Several challenges also became clearer to me, specifically the existing
data sparsity barrier and the much larger feature search space compared to the amount of
available data. Nevertheless, there does seem to be an increasing interest and appreciation
in the NLP community for clinical applications, and more share-able corpora are being
developed. This growing community will hopefully help NLP for clinical applications soon
catch up with more mature NLP domains.
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