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Abstract
Aphasia is a language disorder that affects millions of adults worldwide annually; it is most commonly caused by strokes or
neurodegenerative diseases. Anomia, or word finding difficulty, is a prominent symptom of aphasia, which is often diagnosed
through confrontation naming tasks. In the clinical setting, identification of correctness in responses to these naming tasks
is useful for diagnosis, but currently is a labor-intensive process. This year’s Post-Stroke Speech Transcription Challenge
provides an opportunity to explore ways of automating this process. In this work, we focus on Task B of the challenge, i.e.
identification of response correctness. We study whether a simple aggregation of using the 1-best automatic speech recognition
(ASR) output and acoustic features could help predict response correctness. This was motivated by the hypothesis that acoustic
features could provide complementary information to the (imperfect) ASR transcripts. We trained several classifiers using
various sets of acoustic features standard in speech processing literature in an attempt to improve over the 1-best ASR baseline.
Results indicated that our approach to using the acoustic features did not beat the simple baseline, at least on this challenge
dataset. This suggests that ASR robustness still plays a significant role in the correctness detection task, which has yet to
benefit from acoustic features.
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1. Introduction
Aphasia is a language disorder that affects 2–4 million
people annually just in the US alone.1 Aphasia most
commonly occurs after a stroke or head injury, or can
be acquired slowly from growing brain tumors or neu-
rological diseases.2 Patients with aphasia suffer diffi-
culty in communication, which can manifest as various
forms of language impairments, including both com-
prehension and expression.
One of the most prominent symptoms of aphasia is
anomia, or word finding difficulty. Specifically, apha-
sia patients with anomia might make word production
errors that are semantic (e.g. “dog” for the target “cat”),
phonological (e.g. “tat” for the target “cat”), both, or
even unrelated (e.g. “chair” for the target “cat”). These
errors are typically diagnosed in the clinical setting
through confrontation naming tasks, where the patient
is presented with hundreds of items to identify/name.
The resulting error profiles are then analyzed by pro-
fessionals to provide overall assessment. Understand-
ing these errors is therefore critical in diagnosis as well
development of treatment plans.
However, current approaches for anomia test assess-
ments are labor intensive for clinicians, especially with
a large number of patients, each completing a large
set of tests. Further, speech recognition for atypical
speech, such as that produced by aphasia patients, is
especially challenging, since most state-of-the-art auto-
matic speech recognizers (ASR) were trained on clean

1https://www.aphasiaaccess.org/
white-papers/

2https://www.nidcd.nih.gov/health/
aphasia

(and often read) speech in controlled environments.
Recently, self-supervised speech representation ap-
proaches (Liu et al., 2020a; Liu et al., 2020b; Baevski
et al., 2020), commonly learned from raw audio, have
shown promising results on multiple tasks. Their utility
has been evaluated on a range of spoken language pro-
cessing tasks, from word/phoneme recognition to emo-
tion and sentiment analysis (Yang et al., 2021; Shon et
al., 2021). The natural question is then whether these
systems can be adapted to aphasic speech, especially
when the aphasia data is recorded in conditions of-
ten much different from the pretrained ASR data. In
this work, however, we take a more incremental ap-
proach in assessing the possibility of detecting anomia
with a simple combination of pretrained ASR output
and acoustic features. This approach is inspired by the
earlier works showing the utility of prosody (i.e. how
something is said vs. what is said) in aiding spoken
language understanding systems, both when applied to
hand transcripts and ASR transcripts (Kahn and Osten-
dorf, 2012; Marin and Ostendorf, 2014; Tran et al.,
2019; Tran and Ostendorf, 2021). In particular, we
focus on Task B: correctness prediction of naming re-
sponses in the Post-Stroke Speech Transcription Chal-
lenge (PSST) 2022. We aim to answer the following
questions:

• Using a pretrained ASR system, can correctness
prediction be improved using acoustic features?

• Are there salient differences in the acoustic pat-
terns of correct vs. incorrect naming responses?

In answering these questions, we hope to understand
whether such a simple and low-cost system (i.e. not

https://www.aphasiaaccess.org/white-papers/
https://www.aphasiaaccess.org/white-papers/
https://www.nidcd.nih.gov/health/aphasia
https://www.nidcd.nih.gov/health/aphasia
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requiring additional aphasia-specific data and annota-
tions) helps predict response correctness, or whether it
is worth investing more effort in improving ASR for
the domain of aphasic speech and language disorders
in general.

2. Related Work
Many researchers have explored the potential of using
speech for the diagnosis of language disorders. For ex-
ample, Roark et al. (2011) showed that both lexical and
acoustic signals can help detect mild cognitive impair-
ment (MCI). In particular, noun and verb counts, syn-
tactic complexity (as measured by Yngve score (Yn-
gve, 1960)), pause durations and pause rates seemed
to be most useful. For Primary Progressive Aphasia
(PPA) detection and subtype classification, Fraser et al.
(2013; Fraser et al. (2014) also found that syntactic
complexity features were among the most useful. In
addition, while acoustic features were not as useful in
differentiating PPA from control, they were important
in classification of PPA’s subtypes.
In an investigation to push towards a fully automated
diagnosis pipeline, Zhou et al. (2016) compared using
hand-transcribed speech conversations vs. ASR outputs
to detect Alzheimer’s disease in participants. Not sur-
prisingly, they found that accuracy is higher using per-
fect transcripts, but also identified key features that
have distinguishing power in both gold and ASR tran-
scripts, such as word length and frequency. In addition,
the authors observed that accuracies can vary within a
narrow band of word error rates (WER), i.e. ASR tran-
scripts with the same low WER can contain drastically
different information. For predicting aphasia quotient
(AQ), Le et al. (2018) trained a speech recognition
system on AphasiaBank (MacWhinney et al., 2011)
and achieved a new recognition benchmark for ASR
in aphasic speech, in addition to obtaining higher accu-
racy on AQ prediction.
The research so far has largely been limited by ASR
quality, as aphasic speech proves to be a challenge.
However, to the best of our knowledge, little has been
explored on whether acoustic features are informative
in aiding correctness prediction on top of ASR tran-
scripts.

3. Data and Metrics
The dataset we use is provided by the PSST Challenge
2022 organizers (Gale et al., 2022). In particular, the
dataset is a subset of AphasiaBank (MacWhinney et al.,
2011), a database of multimedia interactions in clinical
settings for the study of aphasia. For the PSST chal-
lenge, the subset includes responses from the Boston
Naming Test – Short Form (BNT) and the Verb Nam-
ing Test (VNT). In addition to the audio and metadata
from AphasiaBank, Gale et al. (2022) provided hu-
man phone-level annotations, as well as the correctness
label for the naming responses (i.e. whether the utter-
ance was considered correct by clinicians). The dataset

is well-balanced with approximately 50%:50% split of
correct vs. incorrect labels (binary classes), both in the
training and validation set. The train/validation/test
splits were predefined by the challenge organizers.
Overall dataset statistics is shown in Table 1.

Split # Utterances PER FER

Train 2298 4.0% 2.4%
Validation 341 22.6% 10.6%
Test 652 n/a n/a

Table 1: Dataset Statistics for the PSST Challenge

For ASR, we use the pretrained system provided by
Gale et al. (2022), and obtained phone transcripts from
this off-the-shelf ASR. The phone error rate (PER) and
feature error rate (FER) are also reported for each set.
PER is a standard metric in ASR research (i.e. %
phone recognition errors out of reference phones); FER
is a metric provided by the challenge organizers that
emphasizes evaluation of errors regarding distinctive
phone features (i.e. putting more value on transcripts
that sound correct as opposed to strict comparison with
phone representations).
For correctness prediction, we use standard evaluation
metrics for binary classification, i.e. F1 score (in addi-
tion to reporting precision and recall), as instructed by
the organizers (Gale et al., 2022).

4. Methods
4.1. Acoustic Features
Inspired by previous works exploring acoustic features
for aphasia classification, we extracted several feature
sets reported in literature to be generally useful in
speech analysis.

• Librosa (McFee et al., 2015) feature set: we
extract the pitch contour for each utterance us-
ing librosa’s implementation of the pYIN algo-
rithm (Mauch and Dixon, 2014; de Cheveigné
and Kawahara, 2002). This gives us the esti-
mated pitch contour, as well as voice activity de-
tection per frame. To summarize the pitch con-
tour and voicing characteristics for the whole ut-
terance, we compute the voice activity rate (ac-
tive rate) for each utterance, which we consider
the proxy for pause characteristics of the utter-
ance. Pause features have been shown to be useful
in acoustic analysis of speech disorders, e.g. as in
(Roark et al., 2011; Le et al., 2018). Additionally,
we hypothesize that pauses are important indica-
tors of speech fluency, i.e. aphasic speech might
be less fluent than healthy speech due communi-
cation difficulties reflected by hesitations and self-
corrections.

To potentially alleviate the loss of acoustic infor-
mation in summarizing features for the whole ut-
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terance, we also estimate the polynomial fit coef-
ficients of the pitch contour. We used a 5th order
polynomial fit, resulting in a six dimensional fea-
ture vector for each utterance, i.e. the coefficients
[a5, a4, a3, a2, a1, a0].

• The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) for Voice Research and Affective
Computing (Eyben et al., 2010): We extract the
low-level descriptors as recommended in (Eyben
et al., 2010); this gave us 18 features that cover
different pitch, energy, and spectral balance char-
acteristics of the speech utterances. Detailed de-
scriptions for each feature can be found in Eyben
et al. (2010). For each feature in this set, we com-
pute the mean and standard deviation of each ut-
terance.

In addition to acoustic features, we explore potentially
using ASR scores for the utterances as a proxy of how
confident the speech recognizer was. We hypothe-
size that lower confidences could potentially indicate
anomalies in the speech patterns and thus could inform
correctness in the naming task. For this, we use the
min, max, mean, median, and standard deviation of the
softmax normalized logit scores generated by the pre-
trained ASR system. Specifically, the logit scores were
first normalized to sum up to 1 before the sufficient
statistics calculations.3 We did not excluded silent or
pad tokens in this work (a possible future tweak), and
this was only a simple way to assess the global ASR
confidence for each utterance.
To select the potentially most useful features for dis-
criminating between correct and incorrect responses,
we perform a t-test for each feature between the correct
and incorrect samples in the training data. Features that
have statistically significant differences (p < 0.001,
using Bonferroni correction) in correct vs. incorrect
samples are the following (henceforth referred to as
CoreFeats):

• max logit: max value of the (normalized) logit
scores in each utterance

• mean logit: mean value of the (normalized) logit
scores in each utterance

• mean Loudness sma3 (GeMAPS feature): mean
value of loudness in each utterance, i.e. mean es-
timate of perceived signal intensity from an audi-
tory spectrum

• sd Loudness sma3 (GeMAPS feature): standard
deviation of loudness in each utterance

• mean spectralFlux sma3 (GeMAPS feature):
mean value of spectral flux in each utterance,

3Raw “logit scores” are a bit of a misnomer since they are
usually not normalized to sum up to 1 for general purposes,
e.g. in inference.

i.e. the mean difference of the spectra of two
consecutive frames

• sd spectralFlux sma3 (GeMAPS feature): stan-
dard deviation of spectral flux in each utterance

Interestingly, none of the librosa features were signif-
icantly different between correct and incorrect sam-
ples. This is surprising since previous work has shown
pauses are a useful indicator, but the feature active rate
is not among CoreFeats according to our selection
heuristics.

4.2. Classifiers
Our baseline model is a simple string matching proce-
dure as implemented by Gale et al. (2022), i.e. we use
the 1-best ASR output and run the program to evalu-
ate whether the transcript is found among acceptable
pronunciations. This baseline output also is chosen to
be our “base” feature, i.e. a binary feature indicating
whether a correct pronunciation is found in the ASR
transcripts.
We experimented with all acoustic features listed in
Section 4.1. In particular, our classifiers were trained
on all the subsets of features listed, as well as those se-
lected through the statistical significance test above, i.e.
CoreFeats.
We explored two types of standard classifiers, since
the dataset is relatively small: logistic regression (LR)
and support vector machine (SVM). Hyperparameter
search included the regularization coefficient C ∈
[10−4, 10−3, ..., 104] for both LR and SVM, and we ad-
ditionally experimented with both linear and RBF ker-
nels for the SVM. We use cross validation with 5 folds
in the training set to select the hyperparameters. Our
models were implemented using the Scikit-learn toolkit
(Pedregosa et al., 2011).

5. Results and Discussion
The baseline model (using string match on 1-best ASR
output) turned out to be a very strong baseline. All
our configurations without using this baseline (i.e. us-
ing only acoustic features) yielded very poor results,
often comparable to random guessing (F1 ≈ 0.5). Re-
sults from experiments with all different combinations
of {Librosa, GeMAPS, logit} features as described in
Section 4.1 all showed similarly poor performances.
Using only CoreFeats did slightly better than random,
but combining CoreFeats with the baseline indicator
does not beat simply using the baseline. In fact, the pre-
dicted outputs from Baseline and Baseline+CoreFeats
were identical.
Table 2 shows the best results with SVM (linear kernel,
C = 0.01).
On the final test set, our best-performing classifier
(Baseline+CoreFeats) obtained F1 score = 0.89 (pre-
cision = 0.93, recall = 0.86) and accuracy = 0.90. This
result is similar to those on the validation set, likely
thanks to similarly balanced data distributions.
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Model Precision Recall F1

Baseline 0.92 0.81 0.86
CoreFeats only 0.64 0.59 0.61
Baseline+CoreFeats 0.92 0.81 0.86

Table 2: Results of Classification on the Validation Set

To diagnose our results, we looked specifically at the
set of samples where the results from our CoreFeats-
only classifier differ from those using Baseline. Our
motivation is to see whether particularly difficult sam-
ples, i.e. those Baseline got wrong, had any indicators
that the acoustic features might have identified.
In both training and validation sets, using only
CoreFeats (without baseline) performed better on the
VNT set compared to BNT. Specifically, out of 1467
utterances in the training set where CoreFeats obtained
correct predictions, 1023 are from VNT while 444
are from BNT. Similarly for the validation set, out of
214 correct predictions by CoreFeats, twice as many
are from VNT than BNT (143 vs. 71). This pat-
tern persists even when looking into the subset where
CoreFeats managed to predict correctly those Base-
line predicted incorrectly. In the validation set, while
CoreFeats performed better than Baseline for only 15
utterances, only 2 are from BNT while the rest are from
VNT. Anecdotally (from listening to a few samples),
we observed that the BNT task involves isolated word
naming while VNT elicits potentially longer, more
sentence-like speech to include the verb being tested.
We hypothesize that this is where acoustic features are
likely more useful, as these longer speech samples ex-
hibit more diverse prosodic phenomena easier to model
by acoustic features (Tran, 2020).
Figures 1 and 2 show the histograms of subset of sam-
ples where the outputs of Baseline and CoreFeats clas-
sifiers differ. In the training set, it appears that acoustic
features could potentially help identify additional true
positives (correct naming responses). However, the
majority of instances are correctly classified by Base-
line, so it is not obvious that acoustic features could
help in a significant way.
The similar analysis on the validation set shows a
slightly different trend: here Baseline misses more in-
correct responses, i.e. it failed to identify utterances
with incorrect pronunciations/reading. Arguably this
is the more interesting case where acoustic features
should help: for example, while there might be a good
string match between the ASR transcript and the true
transcript, the acoustic characteristics of the utterance
might help flag these as incorrect responses to help re-
duce misdiagnosis. However, again, the majority of
cases are still correctly classified using Baseline.
This difference in behavior between the training and
validations sets, coupled with the large difference in

Figure 1: Distribution of samples where Baseline
predictions are different from CoreFeats predictions;
Training set.

Figure 2: Distribution of samples where Baseline pre-
dictions are different from CoreFeats predictions; Vali-
dation set.

PER and FER as shown in Table 1, suggests that the
pretrained ASR system might have overfitted on the
training set.

6. Potential Next Directions
Our first attempt at a simple system to classify cor-
rectness of naming responses in anomia diagnosis has
yielded negative results so far. Specifically, the chal-
lenge seems to be two-fold: (1) acoustic feature selec-
tion and (2) over-reliance on robust ASR.
Regarding acoustic feature selection, it is largely un-
clear how to select the best set of features, despite a
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large amount of study dedicated to this area. Using
acoustic features in this setting is also difficult both
from the modeling (how to aggregate frame-level fea-
tures to the utterance level representation) and the data
quality (which features are robust to recording noise,
dialects, age, etc.) perspectives. The dataset in this
challenge is quite small, and the acoustic feature space
is large. Perhaps redoing this feature analysis on a
larger aphasia dataset might yield a different result.
Regarding ASR systems, the difference in both classi-
fication results and FER/PER between the training and
validation sets highlights the difficulty in domain adap-
tation. One experiment we would have liked to try is to
use several off-the-shelf pretrained ASR systems and
devise heuristics for ensembling the results. For exam-
ple, in addition to a Baseline as in this work, we could
look at the differences in prediction and confidences of
various ASR systems, and use these differences as an-
other proxy the transcription quality.
Overall, from this small study, it appears that the ro-
bustness of ASR plays a more important role than
acoustic feature exploration.

7. Conclusion
In this work, we focus on Task B: Correctness Evalua-
tion of the PSST Challenge 2022. Our goal was to in-
vestigate whether using acoustic features in addition to
ASR transcripts would improve correctness prediction.
The motivation was that if acoustic features helped, this
augmentation approach would only need a relatively
good pretrained ASR system without further collect-
ing costly annotations or additional data for fine-tuning
ASR. Unfortunately, this was not the case, as our ap-
proach to using acoustic features could not improve
over a simple baseline (string match between 1-best
ASR output and acceptable pronunciations). However,
we did find potential indicators of acoustic feature use-
fulness in tasks eliciting longer speech. Specifically,
using acoustic features obtained better results in the
verb naming test (VNT) than in the isolated noun nam-
ing test (BNT), likely because the former elicits longer,
more sentence-like utterances.
Our results suggest that ASR robustness still plays crit-
ical role in this task, and that it is worth investing more
effort in improving ASR for the domain of aphasic
speech and language disorders in general.
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