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Prosody comprises aspects of speech that communicate information beyond written words

related to syntax, sentiment, intent, discourse, and comprehension. Decades of research have

confirmed the importance of prosody in human speech perception and production, yet spoken

language technology has made limited use of prosodic information. This limitation is due

to several reasons. Words (written or transcribed) are often treated as discrete units while

speech signals are continuous, which makes it challenging to combine these two modalities

appropriately in spoken language systems. In addition, as variable as text can often be, text

has fewer sources of variation than speech. Di↵erent meanings of a written or transcribed

sentence can be communicated through punctuation, but a sentence can be spoken in many

more ways, where prosody is often essential in conveying information not reflected in the word

sequence. Moreover, given the highly variable nature of speech, most successful systems

require a lot of data that covers these di↵erent aspects, which in turn requires powerful

computing technology that was not available until recently.

Given these challenges, and taking advantage of the recent advances in both the speech

processing and natural language processing communities, this work aims to develop new

mechanisms for integrating prosody in spoken language systems, using spontaneous and ex-

pressive speech. This thesis focuses on two language understanding tasks: (a) constituency



parsing (identifying the syntactic structure of a sentence), motivated by the fact that prosodic

boundaries align with constituent boundaries, and (b) dialog act recognition (identifying the

segmentation and intents of utterances in discourse), motivated by the fact that prosodic

boundaries signal dialog act boundaries, and intonational cues help disambiguate intents.

Both parsing and dialog act recognition are important components of spoken language sys-

tems.

This work makes several contributions. From the modeling perspective, we propose a

method for integrating prosody e↵ectively in spoken language understanding systems, which

is shown empirically to advance the state of the art in parsing and dialog act recognition

tasks. Further, our methods can be extended to other spoken language processing tasks.

Through many experiments and analyses, our work contributes to a better understanding

and design of language systems. Finally, speech understanding has broad impact on many

areas, as it facilitates accessibility and allows for more natural human-computer interactions

in education, health care, elder care, and AI-assisted domains in general.
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Chapter 1

INTRODUCTION

“Alexa! Hey Siri! Okay Google!” are now common utterances in the daily speech of

many people. The increasing normalization of speech communication with smart devices

in everyday life benefited from many advances in spoken language understanding (SLU)

research. This increase in voice-based communication, consequently, also motivates further

demand for quality improvement in language technology. For example, users now expect to

be able to converse naturally with their voice assistants or chatbots, instead of simplifying

their speaking patterns to accommodate these devices. Deeper levels of natural or spoken

language understanding, beyond recognizing a sequence of words, are therefore becoming

more important in artificial intelligence (AI) systems.

Better SLU, however, does not only benefit AI/language systems. There is much to

study in human-human communication that has potential for applications in education and

health care. For example, analysis of oral reading or narration can provide signals of literacy

(Medero and Ostendorf, 2013), comprehension (Lochrin et al., 2015), and language acquisi-

tion (Kory, 2014). In the clinical domain, both lexical and acoustic signals can help detect

mild cognitive impairment (MCI) (Roark et al., 2011), primary progressive aphasia (PPA)

and its subtypes (Fraser et al., 2013), as well as Alzheimer’s Disease (AD) (Orimaye et al.,

2015; Fraser et al., 2016) and related dementias (Yancheva et al., 2015). All these tasks

are facilitated by automatic analysis of speech, and can benefit from e↵ective integration of

speech signals that provide valuable information beyond language models.

Despite the growth of voice-based interactions with smart devices, current language tech-

nologies have not been able to use speech information fully and e↵ectively. Spoken language

processing tasks, such as speech translation and spoken information retrieval, have been



2

largely studied from a text-only perspective. Most resources (datasets) and methods (neu-

ral network architectures) for SLU research have been developed from written or transcribed

text. State-of-the-art (SOTA) systems only use speech transcripts as inputs, while the acous-

tic signal carries additional information beyond words: prosody.

1.1 Prosody in Spoken Language Understanding

Prosody comprises aspects of speech that communicate information beyond written words

related to syntax, sentiment, intent, discourse, and comprehension. On the lowest level,

prosody disambiguates many homographs (e.g. REcord vs. reCORD, PERmit vs. perMIT),

especially in situations where they cannot be distinguished from context. On a higher level,

prosody helps resolve syntactic ambiguities (“Mary knows many languages, you know.” vs.

“Mary knows many languages (that) you know.”). Via stress, intonation, and timing pat-

terns, prosody helps convey speaker’s intent (statement vs. question: “You want co↵ee.” vs.

“You want co↵ee?”) and content emphasis (“I want TEA,” implying “not co↵ee, or other

beverage options”). On yet another level, prosody can signal speaker’s sentiment (“The book

was interesting.” vs. “The book was INTERESTING!”), attitude and level of engagement

(“Yeah, sure.” vs. “YEAH! SURE!’), and comprehension or proficiency (fluent vs. disfluent

speech). Prosody therefore helps disambiguate meaning, dialects, intent, sentiment, etc. —

aspects of communication not always reflected by even the most faithful transcripts.

Linguistics research has long confirmed the importance of prosody in speech perception

and production, but language processing systems still face challenges in integrating prosody

e↵ectively. Computational modeling of prosody has been di�cult for multiple reasons: (1)

by definition, important aspects of prosody are not explicitly communicated by transcribed

words, so it is harder to learn from such data; (2) prosody has mostly been studied in

controlled and read speech, while most applications involve spontaneous speech; and (3)

integrating continuous prosodic signals with discrete words is not straightforward.

Given the challenges in modeling prosody in spoken language systems, the goal of this

work is to develop new mechanisms for integrating prosody using spontaneous and expressive
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speech, and taking advantage of recent advances in neural approaches for combining contin-

uous and discrete information. Specifically, our approach uses convolutional neural networks

(CNNs) to automatically learn prosodic features aligned with the (transcribed or recognized)

word sequence, yielding word-synchronous prosodic vectors used jointly with contextualized

embeddings.

1.2 Thesis Focus and Contributions

The contributions of this thesis are as follows. We present a computational model of prosody

that automatically learns acoustic representations useful for language understanding tasks.

Our approach uses a convolutional neural network (CNN) to capture energy and pitch con-

tours over words and their context, which are jointly learned with downstream tasks. Lever-

aging recent advances in contextualized word representations learned from written text, we

show that our use of prosody can still benefit SLU tasks over strong word-only baselines,

improving the state-of-the-art results.

To assess the proposed approach in modeling prosody, this work focuses on two language

understanding tasks: constituency parsing and joint dialog act (DA) segmentation and clas-

sification (henceforth referred to as dialog act recognition). On the sentence level, we study

how using prosody can benefit constituency parsing — the task of identifying the syn-

tactic structure of a sentence. This study is motivated by the fact that prosodic boundaries

align with constituent boundaries. On the sentence and discourse level, we develop methods

of using prosody in dialog act recognition — the task of identifying segments within turns

and their corresponding communicative function, i.e. speech/dialog act. This study is moti-

vated by the fact that prosodic boundaries help signal segment boundaries and intonational

cues help disambiguate intents.

We show analyses of cases where prosody most benefits parsing and DA recognition,

contributing to a better understanding of how speech information can benefit NLP systems.

In particular, we show that for constituency parsing, prosody benefits longer and more

disfluent sentences, helping disambiguate and avoid attachment errors. In DA recognition,
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we show that prosody provides most benefit in segmentation, as well as helps reduce the

most common types of DA confusions (statement vs. opinions).

We show empirically that spontaneous speech and read speech di↵er in both the lexical

style and prosodic style, where a parser trained on spontaneous speech su↵ers less perfor-

mance degradation when evaluated on read speech, unlike vice versa. This result suggests

that spontaneous speech in general is more useful for training AI systems, which we hypoth-

esize is in part thanks to its diverse prosody.

We assess the e↵ects of imperfect transcripts on parsing and DA recognition, by studying

the performance of our models on automatic speech recognition (ASR) data. Using a simple

re-ranking system, we show that prosody still helps parsing, yielding improvements over 1-

best parses relative to the oracle N-best gain. In all settings, parsing using prosodic features

outperforms parsing with only transcript information. Similarly, in joint DA recognition, we

show that prosody still helps improve performance, especially in segmentation, where the

gain is significantly larger compared to transcript-only baselines.

Both parsing and dialog act recognition are important components of spoken language

systems, and provide better understanding of prosody in human-human communication.

The methods in our work can be generalized to other SLU tasks, and have the potential

to contribute to more natural human-computer interactions in education, health care, elder

care, and numerous other AI-assisted domains.

1.3 Thesis Overview

This dissertation is structured as follows.

In Chapter 2, we provide background on research in prosody, language processing re-

search that uses prosody, as well as current widely successful NLP methods that we build

on. Section 2.1 gives an overview of definitions and common conventions for prosody anno-

tations and research in speech perception and production that motivates the use of prosody

in language systems. A review of common spoken language understanding studies using

prosody is also provided in Section 2.2, including a brief overview of prosody in both speech
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synthesis and speech understanding. Our tasks of interest, constituency parsing and dialog

act recognition, are introduced in Section 2.3, including the standard spontaneous speech

dataset, Switchboard, and related parsing and DA recognition research. Additionally, in

Section 2.4 we give a brief overview of recent successful approaches to word representations

in NLP.

Chapter 3 describes our general approach for integrating prosody in our studies. Sec-

tion 3.1 reviews the general encoder-decoder neural network approaches that have benefited

multiple NLP tasks recently, including recurrent neural network models and transformer

models. These architectures provide strong baselines and set up frameworks that can be

used for integrating prosodic information in our tasks. We then present our proposed model

for incorporating prosody in Section 3.2. This model is developed to use low-level and frame-

based speech features, such as pitch and energy, that are learned jointly with a specific task,

therefore providing task-specific speech signal representations that are learned automatically,

without the need for expensive human annotations but still motivated by previous research

on prosody.

Our studies on constituency parsing are presented in Chapter 4. We introduce the models

used in Section 4.1 and review research questions in Section 4.2. Our experiment results and

discussion are presented in Section 4.3, where we provide analyses on how prosody benefits

parsing, and show the importance of using expressive, spontaneous speech in parser training.

Section 4.4 summarizes the findings of this chapter.

For DA recognition, our studies on are presented in Chapter 5. The models we used are

introduced in Section 5.1 and research questions in Section 5.2. We present experiment results

and discussion in Section 5.3, where we show how prosody helps improve DA segmentation

and detection of opinions, among other results. A summary of findings is also presented in

Section 5.4.

Chapter 6 presents our study on ASR transcripts. Here we assess the performance of

our developed systems on imperfect transcripts and determine how useful prosody can still

be in this scenario. Experiments on parsing are provided in Section 6.2 and DA recognition
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in Section 6.3. For both parsing and DA recognition, we again show that prosody is still

beneficial, and in the case of DA recognition, even more so compared to perfect transcripts.

A summary of findings from this chapter is in Section 6.4.

Finally, a summary of findings and discussion of future directions are provided in Chapter

7. We review our contributions in Section 7.1 and suggest directions for future research in

Section 7.2.
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Chapter 2

BACKGROUND

This chapter reviews literature related to prosody in human communication research and

prosody in the broader spoken language processing area. Motivated by prosody research in

processing human-human dialogs, we focus on two tasks (parsing and dialog act recognition),

both of which are based on the Switchboard (SWBD) dataset. We also review recent neural

language processing approaches that facilitated our work.

2.1 Prosody Overview

In this section, we give an overview of definitions and conventions of prosody from perception

studies and a linguistics research perspective.

2.1.1 Definitions and Conventions

Prosody consists of elements in speech beyond orthographic words, i.e. the part of human

communication that emphasizes and groups words, disambiguates meaning, and expresses

speakers’ attitudes and emotions. While definitions of prosody often encompass a variety of

speech phenomena, researchers have largely converged to representing prosody on two levels:

symbolic and acoustic. These two levels are also related to two common ways of defining

prosody in the linguistics community, by its function (the symbolic level) and its form (the

acoustic level) (Wagner and Watson, 2010). From the function perspective, prosody refers

to properties of speech that depend on and help convey structure and meaning of an utter-

ance, such as marking phrase boundaries and prominence, communicating speakers’ attitude

and focus. From the form perspective, prosody comprises of segmental (syllable-level) and

suprasegmental (word- and phrase-level) aspects of speech, which are reflected in acoustic
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cues such as pauses, word/syllable lengthening, pitch (f0), and energy. These variations

in the acoustic signal, individually and in combination, contribute to the realization of a

sentence’s structure and meaning.

In representing the symbolic structure of prosody, at least for standard American English,

researchers have focused on two aspects of speech: (a) prominence, which characterizes

locations of relative salience in an utterance, and (b) phrasing, which creates groupings of

words. Both prominence and phrase boundaries are signaled by a combination of energy,

f0, duration lengthening, and pausing; each aspect exhibiting di↵erent patterns of energy,

timing, and f0 changes. One common framework for describing prosody is ToBI (TOnes and

Break Indices), motivated by works of Pierrehumbert (1980) and Price et al. (1991). ToBI

has been largely adopted as a prosody transcription system for standard American English

(Silverman et al., 1992). Briefly, ToBI represents the intonation contour in an utterance by

a series of H(igh) and L(ow) tone markings, and phrase boundaries by break indices (0-4)

quantifying the degree of disjuncture between words. After ToBI was introduced, there have

been e↵orts to adapt it to other languages: e.g. Korean (Jun, 2000), Japanese (Venditti,

2000), Chinese (Aijun, 2002), and German (Grice et al., 2005), among others.

While ToBI remains the most common prosodic event annotation framework, many oth-

ers exist. For instance, INTSINT (INternational Transcription System for INTonation) de-

veloped by Hirst (1987) was an attempt at becoming the prosodic equivalent of the IPA

(International Phonetics Alphabet). Tilt, proposed by Taylor (1998), and SLAM (Styliza-

tion and LAbeling of speech Melody), by Obin et al. (2014), are models designed to facilitate

automatic analysis and labeling of intonation, i.e. these models described the intonation pat-

terns in a simpler way to be integrated into spoken language systems. For English, RaP

(Rhythm and Pitch), proposed by Dilley (2005), is another annotation system developed to

address certain aspects in ToBI that were found to be lacking, e.g. the precise correspon-

dence between phonetic attributes to categories of intonational contrast and speech rhythm

labeling (Breen et al., 2006). A key di↵erence between RaP and ToBI is RaP’s emphasis on

transcribers’ perception of prosodic events, hence the pitch (f0) contour is considered an aid
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rather than a requirement as in ToBI, for example.

2.1.2 Prosody in Human Communication

Research on the role of prosody in language production and comprehension dates back

to 1970s (Wagner and Watson, 2010; Dahan, 2015). Following the definitions in Section

2.1.1, most research has focused on how the acoustic cues — energy, pitch, and timing

(word/syllable duration, pausing) — interact and reflect two symbolic aspects: prominence

and phrasing. This relationship is commonly revealed and analyzed in the way prosody

contributes to resolving ambiguities and therefore communicating the intended meaning.

For phrasing, pre-boundary lengthening has been shown to correlate with the strength

of the boundary (Wightman et al., 1992). Specifically, the articulatory di↵erence between

segments is greater around a prosodic boundary (Fourgeron and Keating, 1997), and bound-

ary e↵ects extend up to 3 syllables from the boundary, decreasing with the distance from

the prosodic boundary (Byrd et al., 2006). Further, these observations are supported by

ERP (Event-Related Potentials) studies, which show reliable elicitation of a positive shift in

electrical activity at the closure of the phrase, i.e. a CPS (Closure Positive Shift) (Bögels

et al., 2011; Peter et al., 2014).

Similarly, prominence is also signaled by duration, pitch, and energy cues. Beckman

and Edwards (1992) suggested that the changes in duration related to prominence are di↵er-

ent from those related to phrase boundaries: increased vs. decreased gestural sti↵ness (one

parameter of their speech articulation model). Ladd and Morton (1997) found increased

pitch range to encode emphasis, Xu and Xu (2005) found decreased pitch range to signal

post-focal material, and Kochanski et al. (2005) suggested that loudness is a better acoustic

correlate of focus than pitch.

In relation to sentence structure, syntactic boundaries have been found to be well-aligned

with prosodic boundaries (Grosjean et al., 1979). Lehiste (1973) showed that the most

reliable acoustic cues for resolving syntactic ambiguities are pre-boundary lengthening and

pauses. Fant and Kruckenberg (1996) found strong correlations between pause duration
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and syntactic boundary level, and Ladd (1988) found that pitch scaling helps disambiguate

di↵erent coordination structures. Price et al. (1991) also showed that listeners can use

prosodic information to resolve syntactic ambiguities, which is further supported by recent

work (Watson and Gibson, 2005; Snedeker and Casserly, 2010).

In relation to meaning (besides syntactic disambiguation), prosody signals important

aspects of information both on the utterance and discourse levels. For example, prominence

signals the relative importance of an entity in discourse (Grosz, 1977), and the location of

nuclear stress aids the interpretation of sentences with focus-sensitive operators (e.g. only,

sometimes, all, most, etc.) (Halliday, 1967a; Wagner et al., 2010). Older linguistic studies

suggest that prosody helps distinguish given vs. new information status, with old (given)

items being de-accented (Halliday, 1967b; Chafe, 1976). More recent work shows that the

acoustic realization still depends on many factors such as the location of the item in the

utterance, and whether its surrounding items are accentable due to their own information

status (Huang and Hirschberg, 2015). In standard American English, Grosz and Hirschberg

(1992) found that phrases with new topics are begun with a wider pitch range and follow

longer pauses, while topic-final phrases are characterized by a narrow pitch range and but

also precede longer pauses.

To summarize, there is evidence from linguistic studies that prosody plays an important

role in speech production and perception. These findings inform us of important acoustic

correlates to prosodic structure and therefore provide a guide to our feature selection and

model development.

2.2 Prosody in Spoken Language Processing

Motivated by the results of the linguistic studies above, researchers in the engineering com-

munity have looked at ways to incorporate prosody into spoken language processing systems,

with more e↵ort (and success) in speech synthesis than speech understanding.

In speech synthesis, a generated utterance that is considered to be of high quality is often

one that has natural prosody. It is therefore unsurprising that mechanisms for controlling
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prosody have been well studied in synthesis research. In traditional text-to-speech (TTS)

systems, where the input is (user-defined) text, there is often a separate text analysis module,

which predicts symbolic prosody elements (phrasing and prominence), informing the audio

generation module via timing and pitch parameters. Direct prosody control is then achieved

by learning appropriate pitch and timing characteristics, often parametrized by the source-

filter speech production model conditioned on the predicted prosodic symbols. For example,

Maia et al. (2007) focused on learning the source excitation parameters while others trained

Hidden Markov Models (HMMs) to learn filter parameters (Tokuda et al., 2013). Another

approach for direct prosody control involves waveform modification, as in concatenative

synthesis systems (Obin et al., 2012). In domain-constrained synthesis systems, i.e. concept-

to-speech (CTS), prediction of prosody symbols and search of concatenative speech units

can be done jointly, by passing an annotated network that represents concepts (Bulyko and

Ostendorf, 2002), or by representing speech units with a variety of sentence- and document-

level semantic features (Pan, 2002).

Most recently, end-to-end neural approaches for TTS (van den Oord et al., 2016; Wang

et al., 2017) demonstrated high-quality synthesized speech in addition to diverse realistic

voices. For prosody control, a recent approach proposed learning latent style embeddings

(Skerry-Ryan et al., 2018), which capture certain aspects of reference prosody, e.g. voice

quality and pitch, without direct modeling of prosody. Subsequently, Wan et al. (2019)

proposed a TTS system, CHiVE, that learns to directly predict prosodic features (pitch,

energy, duration) using a hierarchical variational auto-encoder. However, these types of end-

to-end approaches do not allow for prosody control through markup languages, such as the

Speech Synthesis Markup Language (SSML),1 Speech Integrating Markup Language (SIML)

(Pan and McKeown, 1997), and Sable.2 Although limited in range of control, these markup

workarounds allow for some flexibility from the users’ perspective.

Spoken language understanding, however, has not seen success from using prosody to

1https://www.w3.org/TR/speech-synthesis11

2http://www.cstr.ed.ac.uk/projects/festival/

https://www.w3.org/TR/speech-synthesis11
http://www.cstr.ed.ac.uk/projects/festival/
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the same extent as spoken language generation. One reason is that the fundamental step

in speech understanding involves correctly identifying the word sequence. Thus, automatic

speech recognition (ASR) has been the priority of research for a long time, and most appli-

cations using prosody either rely on available transcripts or jointly model prosody with the

recognition task.

Several lines of work have used prosody in varying degrees of scope and tasks. For word

recognition itself, earlier work modeled phoneme and words by conditioning the acoustic and

language models on pitch accent and intonational phrase boundaries (Chen et al., 2006),

showing reduction in word error rate (WER) by up to 10%. Hasegawa-Johnson et al. (2005)

showed that a prosody-dependent speech recognizer, which also learned to predict prosodic

events, can lower WER compared to prosody-independent systems. Similarly, Vicsi and

Szaszak (2010) trained their speech recognizer jointly with word boundary detection mod-

ule, and improved word recognition by incorporating prosodic information in N-best lattice

rescoring. However, current SOTA ASR systems do not use prosody.

Another line of studies focuses on predicting prosodic events, in particular pitch ac-

cent detection/classification and intonational phrase boundary classification. The types of

pitch accent and intonational phrase boundaries are most often based on those defined in

ToBI. Many researchers (Wightman and Ostendorf, 1994; Levow, 2005; Brenier et al., 2005;

Rosenberg and Hirschberg, 2009; Rosenberg, 2010) have proposed systems that learn to pre-

dict ToBI labels with traditional machine learning approaches such as decision trees and

maximum-entropy classifiers. More recent approaches are neural-based, which typically use

convolutional neural networks (CNNs) or recurrent neural networks (RNNs) to model the

sequence of words and contexts that can be used as features for prosody prediction (Stehwien

and Vu, 2017; Stehwien et al., 2018). However, as these studies rely on supervision signals

from prosodic annotation, i.e. ToBI, their scope has been relatively constrained in terms of

both data — ToBI annotation is expensive — and diversity in style — mostly done on read

news speech, typically using the Boston News Corpus (Ostendorf et al., 1996).

For downstream applications, prosodic features have been shown to benefit a range of
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tasks, from segmentation-related tasks to meta information and paralinguistics tasks. Seg-

mentation tasks where prosody was shown to improve performance include topic segmenta-

tion (Hirschberg and Nakatani, 1998; Tür et al., 2001), sentence boundary detection (Kim

and Woodland, 2003; Liu et al., 2004; Kolář et al., 2006), and turn segmentation (Hirschberg

et al., 2004). For meta information recognition and paralinguistics tasks, prosody has been

helpful in language identification (Martinez et al., 2012; Martinez et al., 2013), emotion

recognition (Luengo et al., 2005; Cao et al., 2014), stance classification (Ward et al., 2017,

2018), and deception detection (Levitan et al., 2018; Chen et al., 2020), to name a few.

Most of these studies either rely on available prosodic annotation (or predicted prosodic

annotation) on the word level (discrete ToBI prosodic representation), or attempt to model

the prosodic patterns for the whole utterance, i.e. without considering the alignment between

the acoustic stream and the word sequence. These studies often involve simple averaging of

frame-level features, or stacking utterance-level frame statistics of a large set of hand-selected

features (Eyben et al., 2010). While there have been some success with such approaches

(Stehwien and Vu, 2017; Roesiger et al., 2017), this type of prosody modeling might not

capture the word-level acoustic variations, which can provide valuable information in tasks

that rely on the word sequence identity.

In summary, computational models of prosody have been more e↵ectively explored in

speech synthesis than in speech understanding. Our approach aims to address the limita-

tions in scope of use and modeling. Specifically, we do not require expensive annotations,

and develop a framework for integrating word-synchronous acoustic representations without

relying heavily on perfect transcripts and timing information.

2.3 Prosody in Spoken Language Understanding: Our Focus

In order to use prosody e↵ectively in language systems, we need to learn from natural con-

versational speech. This section reviews our basis of focus — the Switchboard corpus of

conversational speech with rich annotations, and two tasks that can be studied in detail

given this corpus: constituency parsing and dialog act recognition.
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2.3.1 The Switchboard Corpus

Switchboard (SWBD), originally collected by Godfrey and Holliman (1993) and later cleaned

up by Marcus et al. (1999), is a collection of 2,400 telephone conversations between 543

speakers of American English. The speakers were strangers, and were asked to discuss a

predefined topic from a set of prompts. Many follow-up datasets were based on SWBD,

each annotating a di↵erent aspect of the conversations. About 642 of the conversations were

annotated with constituency parse trees as part of the Penn Treebank corpus — Treebank

3 (Marcus et al., 1999), and a bigger set of 1,155 conversations was annotated with dialog

acts as part of the SWBD-DAMSL project (Jurafsky et al., 1997), the SWDA corpus. Other

layers of annotations have also been released; Calhoun et al. (2010) provides a comprehensive

overview.

Because human transcribers are imperfect, the original transcripts contained errors, some

of which were corrected in the Treebank3 release, but not all. Mississippi State University

researchers ran a clean-up project which hand-corrected 1,126 conversations and produced

alignments between the transcripts indicating the type of errors (missed, inserted, or substi-

tuted) (Deshmukh et al., 1998). The authors did not re-annotate other aspects of the dataset

such as disfluency, parse structure, and dialog acts. However, these MS-State transcriptions

provide a more accurate reference; in our experiments involving prosody, they also make a

good resource for analyses for comparing performance of our models that might have been

a↵ected by transcription errors.

Table 2.1 presents corpus statistics for the two tasks of our interest. Note that the

conversations (and transcripts) for the two tasks are not the same, as Jurafsky et al. (1997)

annotated an earlier (original) version of SWBD.

2.3.2 Prosody in Constituency Parsing

Constituency parsing is the task of identifying the syntactic structure of a sentence, which is

an important component in many language understanding systems. As mentioned in Section
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Table 2.1: Overview of statistics of the Switchboard corpus in two tasks of interest: con-

stituency parsing (Treebank3) and dialog act recognition (SWDA)

Parsing Dialog Acts

# conversations 642 1,155

# sentence units 108,783 201,191

# turns - 101,015

# tokens 828,322 1,582,993

2.1.2, the alignment between syntactic boundaries and prosodic boundaries motivates the

use of prosodic features in constituency parsers. Two examples of sentences and their parse

representations are shown in Figures 2.1 and 2.2, also demonstrating the di↵erence between

typical written text and spoken sentences. Specifically, written text is usually cased (clues to

noun phrases) and has punctuations (clues to constituent units), while transcripts of spoken

utterances lack such structure signals. More importantly, spoken utterances often include

phenomena not seen in written sentences, such as disfluencies (the EDITED node) and filled

pauses (the INTJ node).

Figure 2.1: Example parse tree of a sentence in the Wall Street Journal dataset. Tokens are

cased and punctuations are present, which are often good clues to syntax.
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Figure 2.2: Example parse tree of a spoken utterance in the Switchboard dataset. Tokens are

lower-cased (as expected in spoken transcripts), no punctuations are present, and disfluent

phenomena (EDITED, INTJ nodes) are common.

While parsing is well studied on written text to this day (Gómez-Rodŕıguez and Vilares,

2018; Kitaev and Klein, 2018; Kitaev et al., 2019), work on parsing conversational speech

has been limited. Early work in parsing conversational speech made it clear that speech data

poses challenges not present in written text, e.g. the lack of punctuation and the presence of

disfluencies (Charniak and Johnson, 2001), and therefore most results seen in parsers trained

on text do not transfer well to spoken language data.

Later studies incorporated prosodic features into parsing systems, but initial e↵orts in

directly using raw acoustic features showed discouraging results (Gregory et al., 2004) or

modest gains. In particular, Kahn et al. (2005) leveraged automatically predicted prosodic

labels (trained on a smaller annotated set) in a statistical parser, achieving improvements in

both parsing and disfluency detection. Similarly, Dreyer and Shafran (2007) also predicted

prosodic break labels as latent annotations that enriched the parse grammar, leading to an

F1 score improvement of 0.2%. In a more recent work, Kahn and Ostendorf (2012) showed

that prosody was most useful when sentence boundaries were unknown, in the context of

joint parsing and word recognition. These systems, however, assume the availability of

human-annotated prosodic features, e.g. ToBI, or features from a system trained on these

rich, expert-level annotations.
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Another major challenge of parsing conversational speech is the presence of disfluencies,

which are grammatical and prosodic interruptions. Disfluencies include repetitions (‘I am +

I am’), repairs (‘I am + we are’), and restarts (‘What I + Today is the...’), where the ‘+’ cor-

responds to an interruption point. Charniak and Johnson (2001) and Johnson and Charniak

(2004) suggested that disfluencies are di↵erent in character than other constituents, improv-

ing parsing performance by combining a PCFG parser with a separate module for disfluency

detection. More recently, however, studies have shown that (retrained) SOTA constituency

parsers still perform well on disfluent speech (Jamshid et al., 2019), and therefore are good

disfluency detectors as a by-product (Jamshid and Johnson, 2020). These studies, however,

only parsed transcript texts; prosodic features were not used.

2.3.3 Prosody in Dialog Act Recognition

Dialog act (DA) recognition is the task of identifying the category (speech act) of a spoken

sentence unit, such as statement, question, agreement, backchannel, and more. Sentences

make up turns, which are associated with a speaker in the conversation; a turn in a dialog

consists of one or more sentence-level dialog acts. Some examples of dialog acts are shown

in Table 2.2.3

Most works in DA recognition treat the task as text classification, focusing on sentence-

level classification of a DA given a known (segmented) utterance. Early work (Stolcke et al.,

2000) modeled discourse structure as HMM with DAs as emitted observations, where the

discourse grammar is modeled via a combination of word n-grams and DA class probabilities

produced by a neural network or decision tree classifier learned on prosodic features. The use

of prosody was shown to be beneficial in these works, specifically in distinguishing questions

from statements, and backchannels from agreements (Shriberg et al., 1998). For example,

Jurafsky et al. (1998) found that, compared to agreements, backchannels are often shorter in

duration and less intonationally marked (lower f0, energy). In these older studies, prosodic

3Taken from http://compprag.christopherpotts.net/swda.html.

http://compprag.christopherpotts.net/swda.html
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Table 2.2: Example of the most frequent dialog acts in the SWDA corpus.

Dialog Act Tag Example

Statement-non-opinion sd Me, I’m in the legal department.

Acknowledge (Backchannel) b Uh-huh.

Statement-opinion sv I think it’s great

Agree/Accept aa That’s exactly it.

Abandoned or Turn-Exit % So, -

Appreciation ba I can imagine.

features include pauses, duration, and combinations of frame statistics such as mean/max

f0, least-squares all-points regression over utterance and penultimate regions, etc.

More recent neural approaches have focused on modeling utterance-level or dialog-level

representations for DA classification, commonly using CNNs (Kalchbrenner and Blunsom,

2013), LSTM-RNNs (Khanpour et al., 2016), or a combination of both (Lee and Dernon-

court, 2016). These studies additionally showed the importance of modeling history and

context, as previous utterances are often good signals of the current utterance’s speech act,

e.g. a statement often follows a question. Along these lines, researchers have incorporated

segmental dependencies in modeling DAs via: introducing another DA-level CNN or RNN

layer (Ortega and Vu, 2017); using previous reference or predicted dialog act posteriors (Liu

et al., 2017); extending both utterance- and dialog-level representations with character-level

embedding features (Raheja and Tetreault, 2019) and high-quality pretrained embeddings

(Ribeiro et al., 2019); or dynamic models of speakers (Cheng et al., 2019).

These more recent studies do not use prosodic features, with the exception of a few

that have only explored basic acoustic features such as Mel-Frequency Cepstral Coe�cients

(MFCCs) statistics (Ortega and Vu, 2018) or features originally designed to capture paralin-

guistics elements or speaker characteristics like OpenSMILE (Eyben et al., 2010) in the work
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by Arsikere et al. (2016). He et al. (2018) achieved virtually the same performance with and

without using only MFCCs, which were combined with the text modality using a CNN over

all frames in an utterance, i.e. the authors did not enforce the alignment between acoustic

frames and the word sequence. Moreover, these studies assume known turn boundaries,

which is unrealistic in most dialog systems.

Earlier work that takes into account the problem of segmentation include the pipeline ap-

proach by Ang et al. (2005). For segmentation, pause was used as the main prosodic feature,

reducing segmentation error rate by at least 10% over their language-model-only approach.

For classification, prosodic features used include a small set of simple features such as aver-

age pitch, normalized last pitch, and utterance duration. This integration of prosody helped

reduce DA classification error rate by around 2% over a lexical-only model. Most related to

our work (that also performs segmentation) is the one by Zhao and Kawahara (2019), who

studied the task of joint segmentation and classification. Zhao and Kawahara (2019) reported

performance on a variety of modeling choices: a cascade pipeline that performs segmenta-

tion before classification, a neural sequence-tagging system that predicts joint labels, and a

sequence-to-sequence encoder-decoder model with attention that allows for modeling dialog

context. The authors found that the encoder-decoder model outperformed the cascade and

sequence labeling systems on most metrics by up to 3% in segmentation error rate and 7% in

macro F1 score. However, their study did not use prosodic features. A recent work by Dang

et al. (2020) used acoustic features (mel-filter bank coe�cients) to implicitly perform word

recognition as an auxiliary task, but important prosodic features such as pitch and energy

were not used. Further, both these works by Dang et al. (2020) and Zhao and Kawahara

(2019) did not take advantage of recent advances in neural language representations, which

we review next.

2.4 Neural Language Representations

Before the 2010s, successful NLP systems still largely employed bag-of-words (BOW) features

or their extensions. The first popular word embeddings, i.e. the continuous, dense vector



20

representations of words, were motivated by the distributional semantics theory and learned

via a combination of co-occurrence statistics and dimension reduction (Dumais, 2004), or

probabilistic generative latent models (Blei et al., 2003). As neural network language models

gained in popularity, the hidden states in the feedforward network (FFN) naturally became

the distributed representation of words (Bengio et al., 2003). When recurrent neural net-

work (RNNs) language models overtook FFNs in popularity and trainability, RNNs (Mikolov

et al., 2010), and later word2vec (Mikolov et al., 2013) became the standard word represen-

tations for NLP tasks. During those years, GloVe (Pennington et al., 2014), which learned

representations through co-occurrence statistics, also emerged as a competitive option for

representing words.

While useful in many tasks, these word vectors ultimately are static for each word type,

i.e. they are unable to distinguish di↵erent word senses. Modeling contextual information,

therefore, provided a way to ultimately learn such distinctions. Peters et al. (2018) were

the first to demonstrate the success of contextualized word embeddings, their ELMo word

representations achieved impressive SOTA results on a variety of tasks. Only a year later,

Devlin et al. (2019) introduced BERT, which again improved over ELMo on many NLP tasks.

The key di↵erence between the neural architecture of ELMo vs. BERT is that the language

model in ELMo is learned via Long-Short Term Memory (LSTM) networks, while BERT

is learned using a transformer architecture (Vaswani et al., 2017) and two new objectives

(masked language model and next sentence prediction). Since then, many variations to

contextualized word representations have been proposed, including Transformer XL (Dai

et al., 2019), RoBERTa (Liu et al., 2019), SpanBERT (Joshi et al., 2019), XLNet (Yang

et al., 2019), GPT variants (Radford et al., 2019), T5 (Ra↵el et al., 2020), BART (Lewis

et al., 2020), etc. and many others are constantly being developed.

While these models have consistently outperformed older word vectors such as word2vec

and GloVe, it is worth noting that these large models were all pretrained on written/web-

crawled data instead of spoken transcripts. We experiment with using these new word

representations in our spoken language systems, and show that, perhaps surprisingly, they
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are also useful for spoken language data despite the domain mismatch, and serve as strong

baselines for systems without prosody.
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Chapter 3

COMPUTATIONAL MODELS FOR INTEGRATING PROSODY
IN SPOKEN LANGUAGE UNDERSTANDING TASKS

Many NLP tasks can be formulated as encoder-decoder learning, where the encoder

is trained to learn useful input representations, and the decoder to predict correct labels

specific to a task. In our studies, we focus on two main types of encoders: RNN-based

and transformer-based encoders. For decoders, we briefly review common approaches in

literature, but they are not a focus of our studies as prosody integration is done on the

encoder side. We then describe how we can improve on these by using prosody and give

details on our proposed model, which is integrated in both types of encoders.

3.1 Neural Networks for Language Processing

In this section, we review neural architectures that will be modified in our work to incorporate

prosodic features. These general frameworks are widely used in NLP and can be adapted to

di↵erent tasks.

The encoder-decoder model takes as input a sequence of features x = [x1, . . . , xT
in

] and

learns to output another sequence y = [y1, . . . , yT
out

]. Inputs are usually word representations,

and output vectors are often probabilities over output classes. For example, in language

modeling, these output probabilities are over the vocabulary size, while in tagging tasks

these probabilities are over the tag symbol vocabulary. Outputs for parsing vary depending

on the representation of the parse tree structure and will be described below.
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3.1.1 RNN-based models

In RNN-based models, both the encoder and decoder are composed of RNN cell units, most

commonly the Long-Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) cell,

but the Gated Recurrent Unit (GRU) (Cho et al., 2014) is also a popular option. Figure 3.1

shows the general architecture of RNN-based encoder-decoder models.

Figure 3.1: RNN-based architecture. Left: RNN encoder-decoder model overview; xi is the

sequence of input vectors (features), i = 1, . . . Tin, and yt is the sequence of output vectors,

t = 1, . . . Tout; Tin and Tout do not need to be equal. Right: the RNN encoder have the same

form, which consists of RNN cells. For the encoder, i(·) = x(·) and s(·) = h(·); for the decoder,

i(·) = [d, c,m](·) and s(·) = d(·). Optionally, the encoder can be bi-directional, inducing two

sets of RNN cells. In LSTMs, m is an additional input to the unit, which is not present in

GRUs.

The RNN cells work by encoding the input vectors x into hidden states h = [h1, . . . , hT
in

]

where hi = RNN(xi, hi�1). In the case of LSTM, the RNN function is described by:

ft = �(Wf [xt, ht�1] + bf ) it = �(Wi[xt, ht�1] + bi) (3.1)

ot = �(Wo[xt, ht�1] + bo) m̃t = �(Wm[xt, ht�1] + bm) (3.2)

mt = ft �mt�1 + it � m̃t ht = ot � tanh(mt) (3.3)

where the matrices W(·) and bias vectors b(·) are learnable parameters. In the case of GRU,
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the RNN function is defined by:

zt = �(Wz[ht�1, xt] + bz) h̃t = tanh(Wh[rt � ht�1, xt] + bh) (3.4)

rt = �(Wr[ht�1, xt] + br) ht = (1� zt)� ht�1 + zt � h̃t (3.5)

where, again, W(·) and bias vectors b(·) are learned parameters of the network. This vanilla

RNN encoder-decoder formulation has limitations, as the entire input sequence is represented

by one vector hT
in

. Bahdanau et al. (2015) proposed an attention mechanism that enables

the decoder to consider the whole input sequence in prediction: the posterior distribution of

the output yt at time step t is given by:

P (yt|h, y<t) = softmax(Ws[ct; dt] + bs) (3.6)

where ct is referred to as a context vector that summarizes the encoder’s output h; and dt is

the decoder hidden state at time step t, which captures the previous output sequence context

y<t.

The attention mechanism computes the context vector ct as follows:

uit = v

> tanh(W1hi +W2dt + ba) (3.7)

↵t = softmax(ut) (3.8)

ct =
T
inX

i=1

↵tihi (3.9)

where vectors v, ba and matricesW1, W2 are learnable parameters; ut and ↵t are the attention

score and attention weight vector, respectively, for decoder time step t. This attention

mechanism is only content-based, i.e. it is only dependent on hi and dt. It is not location-

aware since it does not consider the “location” of the previous attention vector. Chorowski

et al. (2015) proposed a convolutional attention scheme that models local phenomena for

these context vectors as follows. A feature vector ft = F ⇤ ↵t�1, where F 2 Rk⇥r represents

k learnable convolution filters of width r, and is used in attention calculation. The filters are

used for performing 1-D convolution over ↵t�1 to extract k features fti for each time step i
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of the input sequence. The extracted features are then incorporated in the alignment score

calculation as:

uit = v

> tanh(W1hi +W2dt +Wffti + ba) (3.10)

where Wf is another learnable parameter matrix.

Finally, the decoder hidden state dt is computed as

dt = RNN([ỹt�1; ct�1], dt�1) (3.11)

where ỹt�1 is the embedding vector corresponding to the previous output symbol yt�1, which

is ground truth during training, and predicted at inference.

In constituency parsing, the RNN-based decoder learns to output a sequence of linearized

parse symbols (more detailed explanation in Chapter 4); in DA recognition, the decoder

learns to output a sequence of joint DA tags. Figure 3.2 illustrates this setup. There are

also several architecture di↵erences between two tasks: in parsing, the encoder RNN cells

are forward-only LSTMs while in DA recognition they are bi-directional GRUs. Another

di↵erence in implementation is that the attention mechanism in DA recognition operates on

the history vectors instead of the input word sequence (details in Chapter 5).

3.1.2 Transformer-based models

In the original transformer model proposed by Vaswani et al. (2017) for machine translation,

both the encoder and decoder are composed from multihead self-attention neural networks.

The transformer architecture, however, has shown success as an encoder alone (Kitaev et al.,

2019; Devlin et al., 2019). In our studies, we focus on transformers’ capability as encoders.

Similar to RNN-based encoders, the transformer encoder maps input vectors xi to a query

vector qi, a key vector ki, and a value vector vi. These key, query, and value vectors are then

used to compute the probability of word i attending to word j as:

p(i! j) / exp

✓
qikjp
dk

◆
(3.12)
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Figure 3.2: General setup for parsing (left) and DA recognition (right) in the RNN-based

models. In both tasks, the input sequence is the sequence of word-level feature vectors. In

parsing, the outputs are parse symbols obtained by linearizing parse trees; in DA recognition,

the outputs are joint DA tags obtained by labeling each token in a turn with a symbol E x

(x = the utterance’s DA) if the token is at the end of the utterance; the token is labeled as

I otherwise.

for all words in the sequence; dk denotes the dimension of the key, query, and value vectors.

In aggregate, a single attention head for a sequence (sentence or turn)X = [x1, x2, . . . , xT
in

] 2

Rd
model

⇥T
in is calculated as

SingleHead(X) =


softmax

✓
XWQ(XWK)>p

dk

XWV

◆�
WO (3.13)

where WO is an output projection matrix to map back to dimension dmodel. All matrices W(·)

are learnable parameters.

The original transformer combines outputs of 8 heads over N = 6 layers. Specifically,

with the first layer’s output Y

1 = MultiHead(X) =
P8

n=1 SingleHead(X), the n

th layer

output is

Y

n = [yn1 , y
n
2 , · · · ynT

in

] (3.14)

= LN(FF(LN(MultiHead(Y n�1)))) (3.15)

where n = 2, . . . , N ; LN denotes the layer normalization operation, and FF denotes the
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feedforward operation:

LN(x) = aLN
x� µp
� + ✏

+ bLN (3.16)

FF(x) = WF1relu(WF2x+ bF2) + bF1 (3.17)

µ and � are the mean and variance of the layer output x, and ✏ is usually set to 10�6. Matrices

W(·) and bias vectors b(·) are learnable parameters. Figure 3.3 summarizes the submodules

in the transformer-based encoder.

Figure 3.3: Transformer-based model with the multihead self-attention encoder, composed

of multihead attention (on the input sequence itself ), layer normalization, and feedforward

blocks.

For decoding, parsing and DA recognition use di↵erent types of decoders. In parsing, the

decoder is a span-based chart decoder, which follows the one from Stern et al. (2017). The

decoder learns to predict a set of best-scoring labeled spans (a, b, l), where a, b 2 [0, Tin] are

position indices, and l 2 Vp is a label in the constituent label vocabulary Vp. These span

scores are computed as:
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s(a, b, ·) = M2relu(LN(M1v + c1)) + c2) (3.18)

where v = [�!y b ��!y a;
 �
y b+1 � �y a+1] summarizes left and right position information of span

(a, b, ·). Following Kitaev and Klein (2018),  �y t and
�!
y t are obtained by splitting in half ynt

from Y

N above; M(·) and c(·) are learnable parameters.

Figure 3.4: General setup for parsing (left) and DA recognition (right) in the transformer-

based models. In both tasks, the input sequence is the sequence of word-level feature vectors.

In parsing, the outputs are scores for each tuple of (a, b, l) span representations, from which

a parse tree can be reconstructed. In DA recognition, the outputs are joint DA tags obtained

by labeling each token in a turn with a symbol E x (x = the utterance’s DA) if the token is

at the end of the utterance, and I otherwise.

In DA recognition, the decoder is a FF layer that learns to predict probabilities over the

DA tag vocabulary Vda = {I,E sd,E sv, . . .} for each word wt given the final layer encoding yNt .

Figure 3.4 illustrates the setups for parsing and DA recognition tasks with the transformer-

based models.
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3.2 Modeling Prosody

In previous work, prosody representation has mainly relied on gold/silver prosodic annota-

tions such as ToBI, or simple averaging/stacking of frame statistics in a word. Symbolic

representations are expensive to obtain, and frame statistics do not capture the dynamics of

acoustic features in a word. We describe our approach to address these limitations.

3.2.1 Acoustic Features

We explore four types of features widely used in computational models of prosody and

motivated by previous linguistics studies: pause, duration, fundamental frequency (f0), and

energy (E). Since prosodic cues are at sub- and multi-word time scales, they are integrated

with the encoder using di↵erent mechanisms.

All features are extracted from transcriptions that are time-aligned at the word level.

Time alignments are provided in our SWBD corpus, or can be obtained from forced align-

ment. In automatically recognized transcripts, time alignments can be a by-product of the

systems. In a small number of cases, the time alignment for a particular word boundary is

missing. Some cases are due to tokenization. For example, contractions, such as don’t in

the original transcript, are treated as separated words for the parser (do and n’t), and the

internal word boundary time is missing. In such cases, these internal times are estimated. In

other cases, there are transcription mismatches that lead to missing time alignments, where

we cannot estimate times.1 For the roughly 1% of sentences where time alignments are miss-

ing, we simply back o↵ to the parser not learned on prosody. In our later DA recognition

experiments, we revised the time alignment estimation to simply copy the start and end

times of contractions to each element of the tokenized sequence. This estimation is also done

for subword tokens as the BERT model has its own tokenizer.

1Time alignments are based on a di↵erent (corrected) transcript version than used in annotations.
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Pause. Given a raw pause duration q, we consider several ways to use it in our system. The

pause embedding feature vector re,i for word i is the concatenation of pre-word pause feature

re,pre,i and post-word pause feature rr,post,i, where each subvector is a learned embedding for

6 pause categories: no pause, missing, 0 < q  0.05 s, 0.05 s < q  0.2 s, 0.2 < q  1 s, and

q > 1 s (including turn boundaries). The bins are chosen based on the observed pause length

distribution (see Appendix A). This way of modeling pause as embeddings was motivated by

two main reasons: (1) to handle missing time alignments (in parsing); and (2) duration of

pause does not matter beyond a threshold (e.g. q > 1 s). However, in later experiments (in

DA recognition), we also use raw pause features ri = [rpre,i, rpost,i], which is the concatenation

of pre- and post-word normalized pauses, computed as rpre|post,i = min(1, ln(1 + qpre|post,i)),

where qpre|post,i is the raw pause duration preceding/following word i.

Word duration. Both word duration and word-final duration lengthening are strong cues

to prosodic phrase boundaries (Wightman et al., 1992; Pate and Goldwater, 2013). The

word duration feature �i = [dgi, dli] consists of two normalized word durations: global dgi

and local dli. The globally normalized word duration dgi is computed as min

⇣
5, wd

i

µ
i

⌘
, where

the threshold 5 is used to limit the e↵ect of abnormally long durations possibly due to

time alignment errors, and µi is the mean duration of the word type; dli =
wd

i

max
u

(wd
i

) where

wdi is the raw word duration, and maxu(wdi) is the max word duration of all words in

that utterance or turn u. The sample mean is used for frequent words (count � 15). For

infrequent words we estimate the mean as the sum over the sample means for the phonemes

in the word’s dictionary pronunciation.

Fundamental frequency (f0) and Energy (E) contours (f0/E). The contour features

are extracted from 25-ms frames with 10-ms hops using Kaldi (Povey et al., 2011). Three f0

features are used: warped Normalized Cross Correlation Function (NCCF), log-pitch with

Probability of Voicing (POV)-weighted mean subtraction over a 1.5-second window, and the

estimated derivative (delta) of the raw log pitch. Three energy features are extracted from
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the Kaldi 40-mel-frequency filter bank features: Etotal, the log of total energy normalized by

dividing by the speaker side’s max total energy; Elow, the log of total energy in the lower 20

mel-frequency bands, normalized by total energy, and Ehigh, the log of total energy in the

higher 20 mel-frequency bands, normalized by total energy. Multi-band energy features are

used as a simple mechanism to capture articulatory strengthening at prosodic constituent

onsets (Fourgeron and Keating, 1997). Concatenating f0 and energy features gives a 6-

dimensional vector computed at a 10-ms frame rate. To summarize these contour features

to a fixed vector for a word, we use a CNN as described in the next section.

3.2.2 Convolutional Neural Network for Acoustic Features

The model described here was introduced in (Tran et al., 2018) and later used in (Tran et al.,

2019). Figure 3.5 summarizes the feature learning approach for representing fundamental

frequency and energy contours in word-level vectors. Each sequence of f0/E frames corre-

sponding to a time-aligned word (and potentially its surrounding context) is convolved with

N filters of m sizes (a total of mN filters). The motivation for the multiple filter sizes is

to enable the computation of features that capture information on di↵erent time scales. For

each filter, we perform a 1-D convolution over the 6-dimensional f0/E features with a stride

of 1. Each filter output is max-pooled, resulting in mN -dimensional speech features si for

word i.

Implementation-wise, for each word i we convolve a fixed window of M frames based on

the center time alignment of the words with the CNN filters. In our experiments, M = 100

based on the distribution of frame lengths for words in our corpus. Specifically, the average

frame length of an word is 25 frames, so a CNN filter of widths 5, 10 are meant to capture

sub-word f0/E characteristics, while larger filter widths such as 50, 100 are meant to capture

those of the word’s surrounding context. Our overall acoustic-prosodic feature vector is the

concatenation of pause features r(e),i, duration features �i, and f0/energy features si in various

combinations. To simplify notations, we use �i = [r(e),i, �i] to denote the concatenation of

pause and duration features for word i.
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Figure 3.5: CNN module for learning acoustic-prosodic features, in particular f0 and energy

features. For each word, we convolve a fixed window of M frames (M = 100) based on the

time alignment of the words with m filters of widths hi. Here the illustrated CNN filter

parameters are m = 3 and h = [3, 4, 5].
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In a complete parser/DA recognizer system, each word i has an associated feature vec-

tor xi = f(ei,�i, si, pi), where the input components ei,�i, si are word embeddings, pause-

and duration-based features, and CNN-learned features, respectively. For the transformer

encoder case, to capture the timing information without recurrent connections, the trans-

former encoder input also includes positional embeddings pi. The function f(·) that combines

these di↵erent types of inputs can be simple addition or explicit factorization as detailed in

Kitaev and Klein (2018). In our case, we extend the lexical-positional factorization in Kitaev

and Klein (2018) to lexical-positional-prosodic factorization. In particular, we learn separate

key, query, and value mappings for each component of the input: ei, pi, and [�i, si].



34

Chapter 4

CONSTITUENCY PARSING AND PROSODY

To assess the usefulness of our proposed approach, we first study the use of prosody

in constituency parsing — the task of identifying the syntactic structure of a sentence. In

recent encoder-decoder neural parsers, the encoder learns the input sentence representation

and the decoder learns to predict a parse tree. While the input is commonly represented via

a sequence of word-level features, representation for the output trees varies: as a sequence

of parse symbols (Vinyals et al., 2015), set of spans (Stern et al., 2017; Gaddy et al., 2018),

syntactic distances (Shen et al., 2018), or per-word structure-rich labels (Gómez-Rodŕıguez

and Vilares, 2018). A key characteristic in many of these neural parsers is the recurrent

network structure, particularly Long Short-Term Memory networks (LSTMs), but Kitaev

and Klein (2018) have shown that a non-recurrent encoder such as the Transformer network

introduced in Vaswani et al. (2017) is also capable of encoding timing information through

self-attention mechanisms, achieving state-of-the-art parse results on the Treebank WSJ

dataset.

4.1 Models

We focus on two neural constituency parsing models: RNN-seq and Self-attn, which we

modify to integrate our prosody learning module. Both models accept a sequence of Tin

word-level features as inputs: x1, · · · , xT
in

, where xi = [ei �i si, pi] is composed of word

embeddings ei, position encodings pi (depending on the model), pause and duration features

�i = [re,i, �i], and a learned representation of f0/E contours si — as described in Chapter 3.

Figure 4.1 gives an overview of two architectures, with the common acoustic-prosodic feature

learning module.
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Figure 4.1: Parser models overview. Left: the RNN-seq model; Right: the Self-attn model;

Center: common CNN module for learning acoustic-prosodic features. Both models take

word-level features as inputs: x1, · · · , xT1 , where xi = [ei �i si] is composed of word embed-

dings ei, pause- and duration-based features �i, and CNN-based features si.

Original parse tree

S FRAG

PP
NP PRP yourself

IN about

INTJ UH uh

Linearized parse tree
(S (FRAG (INTJ (UH uh)) (PP (IN about)

(NP (PRP yourself) ))))

Final POS-normalized linearized parse tree
(S (FRAG (INTJ XX) (PP XX (NP XX))))

Figure 4.2: Data preprocessing. Trees are linearized; POS tags (pre-terminals) are normal-

ized as “XX” and merged with input words at the postprocessing step for scoring purposes.
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RNN-seq Our baseline RNN-seq model follows the setup of Vinyals et al. (2015). Figure

4.2 illustrates the data preprocessing step in this setup.1 Specifically, RNN-seq learns a

mapping from a sequence of Tin word-level features xi to a linearized sequence of Tout parse

symbols z1, z2, · · · zt, · · · zT
out

, using LSTMs for both the encoder and decoder. In addition,

we employ the location-aware attention mechanism proposed in Chorowski et al. (2015),

reviewed in Section 3.1, and extend the encoder with the prosodic feature learning module

described in Section 3.2.

Self-attn The Self-attn model extends the self-attentive encoder chart decoder of Kitaev

and Klein (2018) with the acoustic-prosodic feature learning module as described in Section

3.2. The self-attentive encoder follows the multihead self-attention architecture of Vaswani

et al. (2017) and the span-based chart decoder follows the decoder from Gaddy et al. (2018),

as reviewed in Section 3.1. The span-based chart decoder in essence works the same way

as CKY chart decoding, where, instead of PCFG production probabilities, the scores are

span scores s(a, b, l). Because of this setup, the parse trees reconstructed from the chart are

guaranteed to be valid.

4.2 Research Questions and Datasets

The goal of this study is to answer the following questions:

1. In assessing the use of neural parsers designed for written text, which architecture also

works for speech? We compare Self-attn vs. RNN-seq, and contextualized embedding

vs. non-contextualized embeddings.

2. Does prosody improve further on top of the rich text information in neural parsers for

spontaneous speech? If so, where does prosody benefit most?

1On the decoder end, we also use a post-processing step that merges the original sentence with the
decoder output to obtain the standard constituent tree representation. During inference, in rare cases
(and virtually none as our models converge), the decoder does not generate a valid parse sequence, due
to the mismatch in brackets and/or the mismatch in the number of pre-terminals and terminals, i.e.,
num(XX) 6= num(tokens). In such cases, we simply add/remove brackets from either end of the parse, or
add/remove pre-terminal symbols XX in the middle of the parse to match the number of input tokens.
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3. How is the use of prosody a↵ected by mismatch between read and spontaneous speech

styles?

To answer these questions, we use several datasets described below, mainly evaluating

on the treebanked subset of Switchboard conversational speech data (Section 2.3.1), but

including some results on the read version of the treebanked data. Table 4.1 summarizes the

di↵erent datasets we used: some sets have both audio and parse trees available, while others

have only either audio or parse trees.

Table 4.1: Summary of datasets used in parsing experiments.

Data Style Available material Used for # sentences

WSJ news text (gold) parses train, dev 40k

SWBD conv. speech audio, (gold) parses train, dev, test 96k

CSR read news text audio, (silver) parses train (fine-tune), dev 8k

GT-N read article text audio, (gold) parses test 6k (3k unique)

GT-SW read SWBD audio, (gold) parses test/analysis 31 (13 unique)

We use two primary corpora for training and development: the Wall Street Journal

(WSJ) corpus of treebanked news articles (Marcus et al., 1999) and the Switchboard (SWBD)

corpus of telephone speech conversations (Godfrey and Holliman, 1993; Marcus et al., 1999),

which are the two standard corpora for constituency parsing studies on written text and con-

versational speech, respectively. SWBD includes audio files with time-aligned transcripts.

Wall Street Journal (WSJ) (Marcus et al., 1999) is a standard corpus of news articles with

parse trees used for constituency parsing studies. We use this corpus for assessing the utility

of written text parses in training a parser for spontaneous speech transcripts (Question 1).

Switchboard (SWBD) (Godfrey and Holliman, 1993) is a corpus of conversational speech,

which has audio, time-aligned transcripts, and constituency trees (Marcus et al., 1999). We

use this set for most of our experiments, assessing both the utility of various aspects of
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information available to a parser (transcript vs. transcript and prosodic features).

In order to train a parser with prosodic features matched to the read speech style, we use

the common read subset of the CSR-I corpus (CSR) (Garofolo et al., 1993), which includes

read Wall Street Journal sentences (but does not overlap with WSJ sentences). CSR is

used to fine-tune a pretrained SWBD parser (instead of training from scratch), since the

corpus is much smaller than SWBD. The Penn Phonetics Lab Forced Aligner (P2FA) (Yuan

and Liberman, 2008) was used to get time alignments. Since the CSR sentences are not

covered in the WSJ set, we used a pretrained SOTA parser for written text (Kitaev and

Klein, 2018) to obtain silver trees. To verify the quality of the automatically parsed trees,

we recruited two linguists to hand-correct a random subset of 100 trees. The annotator

agreement is high: the F1 score between annotators’ trees is 97.2%. Among the 100 trees,

both annotators confirmed that the parser got the perfect tree in 72 sentences, and the rest

have minor errors.

To assess parser performance in style mismatch (Question 3), we use two subsets of the

GlobalTIMIT dataset (Chanchaochai et al., 2018): GT-N and GT-SW. GT-N contains

3207 news sentences read by 50 speakers, some were read by multiple speakers, totaling 6k

read sentences; GT-SW contains the read version of 13 Switchboard sentences, read by 29

speakers, totaling 31 read sentences.2 These sentences were selected from the Treebank3

corpus (Marcus et al., 1999), so they have gold parse trees; we use this set for evaluation

and analysis only.

4.3 Results and Discussion

For the RNN-seq parser, we re-implemented the model in Vinyals et al. (2015); for the

Self-attn parser, we modify the implementation in Kitaev and Klein (2018) to include the

acoustic-prosodic feature learning module and the corresponding factorization.

Because random seeds can lead to di↵erent results as demonstrated in Reimers and

2The number of read conversational sentences is limited, because we chose to use a standard corpus.
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Gurevych (2017), we train and tune each model configuration initialized with 5 random

seeds, and report the median prediction as our final result. For both RNN-seq and Self-attn,

we used the same optimizer, Adam (Kingma and Ba, 2014), with the same learning schedule

as the provided implementations. All models are evaluated using EVALB,3 i.e. we report

standard parseval F1 scores, which is F1 on correctly predicted tuples (a, b, l). Statistical

significance was assessed using the paired bootstrap test as described in Berg-Kirkpatrick

et al. (2012).

4.3.1 Assessing Transcript-only Parser Models

To assess the impact of di↵erent types of text representations in parsing speech transcripts, we

train and evaluate our parser on SWBD data, comparing several methods of using/learning

word embeddings ei. These embeddings can be learned jointly with the parsing task, or

extracted from pretrained models and then used as features. For pretrained embeddings,

we consider the following representations: GloVe (Pennington et al., 2014) embeddings are

learned from co-occurrence statistics and have little context information. The standard

version (GloVe-Gigaword) was pretrained on a large corpus of 6B tokens (Wikipedia &

Gigaword 5). We additionally trained GloVe embeddings on a dataset with style more

similar to spontaneous speech, the Fisher corpus (Cieri et al., 2004) and consider the e↵ect

of these embeddings on parsing (GloVe-Fisher). Contextualized embeddings such as ELMo

(Peters et al., 2018) and BERT (Devlin et al., 2019) are recent neural models that have been

pretrained on a large amount of written text data, capturing larger context information with

language modeling auxiliary tasks via bi-LSTM (ELMo) or transformer networks (BERT).

Both ELMo and BERT have been reported to benefit a variety of NLP tasks.

Table 4.2 compares performance of di↵erent models in combination with di↵erent em-

beddings on the SWBD dev set: the transformer-based model outperforms RNN-seq by a

large margin, even without pretrained embeddings. Using pretrained embeddings outper-

3https://nlp.cs.nyu.edu/evalb/

https://nlp.cs.nyu.edu/evalb/
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forms embeddings learned jointly with parsing, even though most pretrained models were

on on written text. Further, there is negligible di↵erence between GloVe-Gigaword and the

better matched GloVe-Fisher. This suggests that text features pretrained on large written

text data do benefit parsing on speech transcripts, with comparable results to text features

pretrained on a dataset more similar in style to SWBD like GloVe-Fisher.

Table 4.2: Parsing results (F1 scores) on the SWBD dev set, using only text information,

comparing di↵erent types of embeddings; all parsers were trained on the SWBD train set.

Di↵erences between BERT vs. ELMo, and those between BERT/ELMo vs. others are sta-

tistically significant with p-val < 0.01.

Model Embedding F1

RNN-seq
Learned 0.880

GloVe - Gigaword (Pennington et al., 2014) 0.886

Self-attn

Learned 0.910

GloVe - Gigaword (Pennington et al., 2014) 0.912

GloVe - Fisher 0.910

ELMo (Peters et al., 2018) 0.927

BERT (Devlin et al., 2019) 0.932

Both contextualized models outperform GloVe models by a large margin (p-val < 0.01),

with BERT showing the best F1 scores, outperforming ELMo with statistical significance (p-

val< 0.01). This is consistent with results in other NLP tasks, confirming that contextualized

embeddings are a powerful tool in a range of applications. All embeddings here are used as

features, without further fine-tuning the embedding weights. We also ran several experiments

where the embedding weights were jointly trained, but the results were worse, probably due

to the large number of weights and the limited amount of speech transcripts.
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Similar to comparing di↵erent types of embeddings, we also assess the e↵ect of using

di↵erent datasets on parsing speech transcripts. Table 4.3 presents these results. Unsurpris-

ingly, simply training on written text data performs poorly on speech transcripts. Train-

ing on additional text-only data (SWBD+WSJ) provides marginal improvement in parsing

conversational speech, suggesting that substantial benefit can be obtained with pretrained

embeddings, but the dataset for the main task still requires a style match.

Table 4.3: Parsing results (F1 scores) on the SWBD dev set, using only text information,

comparing di↵erent types of training data. The di↵erences between SWBD and SWBD+WSJ

are not significant.

Trained on ELMo BERT

WSJ 0.760 0.775

SWBD 0.927 0.932

SWBD + WSJ 0.927 0.934

4.3.2 The Role of Prosody

For this question, we only consider the two best-performing models on transcript-only data:

Self-attn with ELMo vs. BERT. Table 4.4 presents the results on SWBD test set, separat-

ing results by fluent vs. disfluent (sentences with EDITED and/or INTJ nodes) subsets of

sentences.

Comparing transcript-only and transcript+prosody models, prosody helps in both ELMo

and BERT. ELMo results are consistent with results on the RNN-seq models: most gains

seem to be from disfluent sentences. For BERT, the gains are statistically significant in fluent

sentences, but not in disfluent ones. Comparing BERT and ELMo models, BERT-transcript

improves over ELMo-transcript with p-val < 0.05 in disfluent sentences and overall, but
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Table 4.4: Parsing results (F1 scores) on the SWBD test set (3823 disfluent + 2078 fluent

sentences): using only transcript information vs. adding acoustic-prosodic features. Com-

paring transcript+prosody and transcript-only models, statistical significance is denoted as:

(*) p-val < 0.02; (†) p-val < 0.05.

Model Embedding all disfluent fluent

transcript only
ELMo 0.925 0.915 0.946

BERT 0.929 0.919 0.949

transcript+prosody
ELMo 0.927* 0.917* 0.949†

BERT 0.930* 0.921 0.952*

not in fluent sentences. This is likely why BERT-prosody does not improve over BERT-

transcript with statistical significance in disfluent sentences, since BERT-transcript itself is

already good. BERT-prosody improves over ELMo-prosody in all cases with p-val < 0.05.

Additionaly, Table 4.5 shows the parse scores for subsets of sentences grouped by length.

For both ELMo and BERT, prosody benefits parsing more for longer sentences than short

ones.

We also analyze parse error types each parser makes or improves on. We use the Berke-

ley Parse Analyzer (Kummerfeld et al., 2012) to categorize the common error types in con-

stituency parsing. Table 4.6 shows the relative error reduction when using prosody vs. using

only transcripts, and similarly when using BERT vs. ELMo. For both ELMo and BERT,

VP attachment errors are most reduced when using prosody. Figure 4.3 shows an example

sentence where prosodic features (pause) help avoid the attachment error made by the parser

using only transcript features.

Cases where prosody seems to hurt BERT (Coordination, Clause Attachment, and pos-

sibly Modifier Attachment) are contexts where the transcript-only BERT and ELMo models
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Table 4.5: Test set F1 scores for di↵erent sentence lengths. Prosody shows the most benefit

in long sentences.

Sentence lengths (# sents)

Embedding Model
[0, 5]

(2885)

[6, 10]

(1339)

[11, -]

(1677)

ELMo
transcript 0.966 0.963 0.905

transcript+prosody 0.967 0.964 0.908

BERT
transcript 0.965 0.965 0.911

transcript+prosody 0.966 0.967 0.913

Table 4.6: Percentage of error reduction counts from transcript to transcript+prosody models

(first 2 columns) and from ELMo to BERT models (last 2 columns).

Error Type
�(+prosody, transcript) �(BERT, ELMo)

ELMo BERT transcript +prosody

Co-ordination -1.0 -5.1 18.2 14.9

PP Attachment 1.2 1.0 1.2 1.0

NP Attachment -7.5 0.0 6.0 12.5

VP Attachment 19.2 19.6 -7.7 -7.1

Clause Attachment 8.3 -8.1 11.4 -4.4

Modifier Attachment 7.9 -1.4 11.8 3.0

NP Internal 2.7 7.0 6.5 10.6

Single-Word Phrase 5.2 2.3 -3.5 -6.6

Di↵erent Label 1.0 7.3 -2.4 4.1
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Figure 4.3: Predicted tree by a parser using only text (left) made a VP attachment error

and missed the disfluency (EDITED) node, whereas the parser with prosody (right) avoided,

likely thanks to the presence of a pause.

have the greatest di↵erence. For the main case where prosody hurts ELMo (NP Attach-

ment), there is no benefit to BERT. These may simply be contexts where there is little

need for prosody given well-trained transcript-only models. For Clause Attachment errors,

ELMo-speech seems to improve over ELMo-text significantly while the opposite is true for

BERT. This is likely because BERT-transcript (3rd column) already significantly outper-

forms ELMo-transcript, so it is harder for BERT-prosody to improve further over BERT-

transcript. This trend also shows up in other types of errors, such as NP attachment and

Modifier attachment.

4.3.3 Spontaneous vs. Read Speech

For this experiment, we only consider the models with BERT. Table 4.7 presents parsing

results in mismatched tuning-testing conditions. In all settings, training on conversational

speech degrades results on read speech minimally, but training on read speech degrades

results on conversational speech significantly. Further, prosody consistently helps when the

parser is trained on conversational speech, both when testing with matched and mismatched

styles. This suggests that conversational speech data is more useful for general purpose parser
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training, likely because of the diversity in prosodic characteristics available in spontaneous

speech, on top of tail-end phenomena (disfluencies) likely captured by the contextualized

embeddings.

When testing on conversational speech (SWBD column), the biggest e↵ect of mismatch

is associated with the word sequence; the degradation from prosody mismatch seems to have

a smaller but still significant impact (p-val < 0.05). However, when testing on read news

(GT-N column), the BERT model with prosody tuned on read speech sees a performance

gain (p-val < 0.01). These results are consistent with the hypothesis that use of prosody

di↵ers in read vs. conversational speech, i.e. the style mismatch is both in terms of words

and acoustic cues.

Table 4.7: Parsing results (F1 scores) for mismatched tuning-testing conditions: conversa-

tional (C) vs. read (R) vs. read conversational transcripts (RC). Comparing the improvement

of text+prosody over text models, statistical significance is denoted as: (*) p-val < 0.02.

Test data

Train/tuning

data Model

SWBD

(C)

GT-N

(R)

GT-SW

(RC)

SWBD (C) transcript 0.929 0.924 0.980

CSR (R) transcript 0.806 0.939 0.914

SWBD (C) transcript+prosody 0.930* 0.926* 0.980

CSR (R) transcript+prosody 0.804 0.942* 0.903

To further explore this question, we ran experiments on the GT-SW sentences. The

results in Table 4.7 (GT-SW column) are anecdotal but consistent with the other results.

On these sentences, with text-only models, further tuning on read style data degrades per-

formance significantly. For the parsers using prosody, the version trained on spontaneous
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speech seems to be able to handle the read version of Switchboard sentences, but the one

fine-tuned on read text further degrades. It may be that the prosody associated with reading

conversation transcripts is not like that associated with reading more formal written text.

4.4 Summary of Findings

In this chapter, we explored the the task of constituency parsing on spoken language, study-

ing the e↵ects of prosodic features and variations in speaking style (read vs. spontaneous).

Following a series of empirical experiments, we first showed that contextualized word rep-

resentations, despite being pretrained on written text, are still useful in parsing speech

transcripts. Regarding the use of prosody, we showed that our approach to integrating

acoustic-prosodic features further benefits parsing, improving over the strong transcript-

only baselines. Our analyses revealed that prosody is especially helpful in longer sentences,

reducing attachment errors, and detecting disfluent nodes. Finally, our experiments regard-

ing mismatch in speaking styles showed a minimal degradation when parsers were trained on

spontaneous speech and evaluated on read speech, but a more significant degradation vice

versa. This finding suggests that conversational speech is generally more useful than read

speech, which we hypothesize is in part due to the more diverse prosody, further supporting

the importance of using spontaneous speech in developing language systems.
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Chapter 5

DIALOG ACT RECOGNITION AND PROSODY

Dialog act (DA) recognition is the task of identifying the dialog act category of a speech

segment, such as statement, question, agreement, backchannel, and more. Most recent work,

e.g. Ribeiro et al. (2019), achieved high accuracies in DA classification, while assuming known

segment boundaries. However, such an assumption is unrealistic, especially in practical

spoken language systems. In this chapter, we explore models that perform joint segmentation

and DA classification, which we refer to as DA recognition, for short.

Conversations involve multiple people talking. Typically, one person has the floor at a

time, but there can be speech overlaps associated with interruptions and backchannels (verbal

encouragement for the other party to keep speaking). A conversation consists of turns, which

are speech units spoken by a speaker in the dialog. We define a turn as a segment of speech

from a single speaker, bounded by long pauses and/or floor change. Within each turn,

there could be one or more dialog acts. An example from the Switchboard Dialog Act corpus

(SWDA), annotated by Jurafsky et al. (1997), is shown in Table 5.1. In this example, “turns”

are defined based on the original transcription guidelines aimed at preserving the timing of

speaker interactions, but this often splits up dialog acts. These split DAs are indicated

with the “+” tag (for “continuation”), but in itself it is not a meaningful DA category and

there will be no prosodic or syntactic cues to the boundary. Following most work in DA

classification (Stolcke et al., 2000; Raheja and Tetreault, 2019; Cheng et al., 2019; Ribeiro

et al., 2019), we perform a preprocessing step where continuation segments are merged with

the immediate previous segment by the same speaker to form a complete DA. This step is

illustrated in Table 5.2; this processing results in a di↵erent segmentation of speaker sides

into turns.
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Table 5.1: An example of a (partial) dialog in SWDA original form. The “+” tag is used

when there is speech overlap between speaker sides.

Turn# Speaker DA# DA Tag DA Words

...

3 A 4 aa accept/agree I know

3 A 5 sv opinion I guess that I guess you consider

just things that every day that

would you would think of about

3 A 6 sd statement see I’m a college student

3 A 7 sd statement so I can think of lots of things

that my roommate does that

bother me

4 B 8 b backchannel yeah

5 A 9 + continued you know that I think’s like is

an invasion of my privacy stu↵

like that

5 A 10 sv opinion but I think

6 B 11 b backchannel yeah

7 A 12 + continued it’d be it is kind of a tough topic

...
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In joint DA segmentation and classification (DA recognition), we are interested in iden-

tifying the boundaries and categories of dialog acts within a turn, assuming known turn

boundaries. Given multi-channel recordings, turn boundaries can more reasonably assumed

to be known than sentence boundaries, as they are associated with distinctive acoustic cues.

Table 5.2: Example of the same partial dialog in Table 5.1, with continuations merged into

the same turn.

Turn# Speaker DA# DA Tag DA Type Words

...

3 A 4 aa accept/agree I know

3 A 5 sv opinion I guess that I guess you consider

just things that every day that

would you would think of about

3 A 6 sd statement see I’m a college student

3 A 7 sd statement so I can think of lots of things

that my roommate does that

bother me you know that

I think’s like is an invasion

of my privacy stu↵ like that

4 B 8 b backchannel yeah

5 A 10 sv opinion but I think it’d be it is kind of

a tough topic

6 B 11 b backchannel yeah

...

Following (Zhao and Kawahara, 2019), our joint DA recognition task setup is as follows.

Given a transcript of a turn (with time-segmented audio), each token in the turn is labeled
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Table 5.3: Example partial dialog in Tables 5.1 and 5.2 after preprocessing.

Turn# Speaker Word Sequence (Inputs) Joint Tag Sequence (Labels)

...

3 A i know i ... like that I E aa I ... E sv ... E sd ... E sd

4 B yeah E b

5 A but i think ... tough topic I I I ... I E sv

6 B yeah E b

...

as E x if it is the final word in the DA, where x denotes the DA of that utterance; the token

is labeled I otherwise. This resulted in an overall tag vocabulary size of 42: I + E x for x 2 41

DA tags (Jurafsky et al., 1997). In this setup, our joint DA recognition task is essentially a

sequence labeling task. In addition to joint DA tag labeling, additional preprocessing steps

that we did include:

• Remove non-verbal tokens such as [laughter], [noise], [lipsmack]; i.e. we are not predict-

ing the non-verbal tag “x” (it is not clear in previous work if this was predicted).1

• Lowercase all tokens and remove punctuations (similar to parsing).

Table 5.3 shows the same example dialog in Tables 5.1 and 5.2, after these preprocessing

steps.

The dialog act sequence of one speaker depends on the previous dialog acts of the other,

e.g. it is common for a statement to follow a question. Incorporating dialog history can

therefore lead to performance improvement. In joint DA segmentation and classification,

DA boundaries are not given, so the context is represented in terms of previous turns. In our

work, because of the continuation merging, a previous turn can be overlapping and extend

1Based on the implementation we are following, the authors do not predict non-verbal tags either.
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beyond the current turn but the full turn is still used as context. For example, in Table 5.3,

when predicting segmentation and categories for DAs in the 6th turn, a history of 2 means

using turns 4 and 5 as context.

5.1 Models

Similar to parsing experiments, we explore two types of encoder architectures: RNN-seq and

transformers. The RNN-seq model is the best performing model from Zhao and Kawahara

(2019), extended with the CNN module for learning acoustic-prosodic features as described

in Chapter 3. The transformer encoder in our experiments either uses BERT outputs and

CNN outputs as features to a feedforward decoder, or includes another full transformer to

encode these BERT+CNN features. The models are illustrated in Figure 5.1.

Figure 5.1: Joint dialog act recognition models used. Cu�N denotes the context vector,

i.e. encoded history from previous turns. In the RNN-seq models, Cu�N is obtained from

the mean-pooled hidden states of another RNN that was run on previous N turns. For the

transformer-based models, Cu�N can be obtained by mean- and max-pooling of word features

in the previous N turns, then concatenated with word features of the current turn.
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As dialog context is important in predicting the current DA category, we also allow

for incorporating dialog history. Specifically, for a turn u, the context sequence Tu�k, k 2

{1, . . . , N} is obtained from another RNN encoder which was run on previous N turns, where

Tu�k denotes the mean-pooled hidden states of the tokens in turn u � k. The attention

mechanism operates on the context sequence Tu�k, i.e.

Cu�N = ↵k

NX

k=1

Tu�k (5.1)

This history vector Cu�N is then concatenated with encoder hidden states ht for use in

decoding, i.e. the context vector ct�1 in Equation 3.11 is now:

ct�1 = FF ([Cu�N , ht�1]) (5.2)

The rest of the operations follow similarly to Equations 3.6 through 3.10 in Section 3.1.

For the transformer-based models, Cu�N can be obtained by mean- and max-pooling of

word features in the previous N turns. The input to the multihead self-attention encoder is

then the concatenation [Cu�N , xt] for all words xt in the current turn.2

5.2 Research Questions and Datasets

The goal of this study is to answer the following questions:

1. Which architecture and word representations work best for joint DA recognition of

spoken transcripts? We compare transformer-based vs. RNN-based models, and con-

textualized embeddings vs. non-contextualized embeddings.

2. Does prosody improve further on top of these strong neural DA recognizers for spon-

taneous speech? If so, where does prosody benefit most?

3. How does performance on segmentation di↵er from DA recognition, and what are the

error patterns?

2Results with context in the transformer-based models were poor so they are not included in the current
study. However, we describe one approach where context can be incorporated into transformer encoders
for completeness.
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For this task, we use the portion of Switchboard annotated with dialog acts (Juraf-

sky et al., 1997). This subset consists of 1,155 conversations, with train/dev/test splits of

1,115/21/19 conversations. This split does not follow the same convention with standard

parsing splits (i.e. conversations numbers 2000s and 3000s for training), but is used in all

DA classification studies, e.g. (Stolcke et al., 2000; Raheja and Tetreault, 2019; Cheng et al.,

2019; Ribeiro et al., 2019). On average, each conversation has 96.8 turns (min = 14; max =

313; median = 88); and each turn has on average 1.8 DAs (min = 1; max = 30; median =

1).

Time alignment for turns were transferred from MS-State transcripts. Specifically, we

ran a token-level sequence matching algorithm3 to align MS-State tokens and SWDA tokens

for each speaker side. The start and end times of MS-State tokens are transferred to SWDA

tokens using the following heuristics:

• Error-free tokens or substituted tokens: get the same corresponding start and end

times.

• Deleted tokens (present in MS-State, not present in SWDA): no times to be aligned.

• Inserted tokens (not present in MS-State, present in SWDA): get the start time as the

end time of the previous SWDA token, and the end time as the start time from the

following SWDA token.

Anecdotally, we found few problems with this heuristics, based on later ASR experiments.

Briefly, these time alignments were used to extract relevant audio portions to use as inputs

to our ASR system, and we observed reasonable WERs.

5.3 Results and Discussion

For both RNN-seq and transformer models, we used the same optimizer, AdamW (Loshchilov

and Hutter, 2019), with the same learning schedule as the provided implementation. We

report results on all models using the following metrics.

3https://docs.python.org/3.6/library/difflib.html

https://docs.python.org/3.6/library/difflib.html
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• DSER: dialog act segmentation error rate, computed as the number of segments wrongly

detected divided by number of segments in the reference turn. A segment is said to be

correct if all tokens in the reference segment are included in the predicted segment.

• DER: dialog act error rate, computed similarly to DSER, but also taking into account

the DA category of the segments detected.

• Macro F1: macro F1 score over joint DA tags in the predicted sequence.

• SLER: Segment Label Error Rate, computed as the word error rate (i.e. edit distance

divided by number of reference segments) for the sequence of joint tags, ignoring I tags.

DER, DSER, and F1 scores are used in Zhao and Kawahara (2019), and we report these

for comparison. We do nor report their WER scores because these benefit from ASR deletion

errors. Instead, we introduce SLER as a measure better suited for ASR transcripts, where

the predicted and reference turns might not have a one-to-one alignment. Moreover, in

spoken dialog systems, it is often more useful to know the identities of the dialog acts in a

turn, regardless of where such speech acts start or end. Tables 5.4 and 5.5 provide examples

with calculation of these metrics.

Table 5.4: Example for computing metrics on transcripts. Here DSER = 2/3 = 0.67 and

DER = 3/3 = 1. For SLER, the edit distance is 1 (error in red), there are 3 reference

segments, so SLER = 1/3 = 0.33.

Reference tags E b I E sv I E sd

Predicted tags E aa I I E sv E sd

DSER Error 0 1 1

DER Error 1 1 1

Reference tags - utterance level E b E sv E sd

Predicted tags - utterance level E aa E sv E sd
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Table 5.5: Computation of micro and macro F1 on the same example in Table 5.4. Per-

instance F1 is computed as F1 = 2 ⇤Match/(Reference + Predicted).

Tag Match Reference Predicted F1

E b 0 1 0 0

E sv 0 1 1 0

E sd 1 1 1 1

I 1 2 2 0.5

E aa 0 0 1 0

total (micro F1) 2 5 5 0.4

macro F1 0.3

5.3.1 Assessing Transcript-only Dialog Act Recognition Models

We first study which type of model and embeddings work better for our DA recognition

task. Table 5.6 shows the results on SWDA dev set. Our baseline is the best system

in Zhao and Kawahara (2019), which learns embeddings jointly with the task and used

the RNN-seq model. The authors also considered a longer history (9 previous turns) than

we did. Non-contextualized embeddings like GloVe, without enough history length, still

underperforms the baseline with non-pretrained embeddings. Similar to parsing results,

using contextualized embeddings outperforms learned and non-contextualized embeddings

by a large margin in all metrics, even with only the current turn as context (History = 0).

The longer context window (History = 2) generally benefits DA recognition, except on the

DSER metric; i.e. dialog context seems to benefit DA classification but not segmentation. A

possible explanation for this result is that segmentation identification is more local, whereas

DA classification can benefit from history, e.g. knowing a question was asked in the previous

turn may help predict the statement DA for the current turn. SLER is lower than DER, as
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expected, since it is a less strict measure but the relative di↵erences between configurations

are similar on the two metrics.

Table 5.6: DA recognition results (error rates and macro F1) on SWDA development set.

“Baseline” denotes the best system by Zhao and Kawahara (2019), reimplemented as the

original paper used a di↵erent data split. “BERT” denotes using BERT embeddings as

features (no further fine-tuning); “BERT + top layer” denotes fine-tuning the last layer of

the BERT model with the DA recognition task; “BERT + transformer” denotes using BERT

as features (no fine-tuning) with another transformer encoder before the decoder; “BERT +

transformer + top layer” similarly denotes additionally fine-tuning the last layer of BERT.

Model Embedding History DSER DER F1 SLER

RNN-seq

Baseline 9 13.9 30.8 0.479 28.6

GloVe 0 14.1 33.2 0.417 30.9

GloVe 2 13.9 31.8 0.442 29.2

BERT 0 9.8 28.7 0.429 27.1

BERT 2 11.9 27.4 0.489 25.8

Transformer

-based

BERT 0 24.9 44.1 0.304 42.3

+ top layer 0 11.2 30.9 0.384 29.9

+ transformer 0 10.7 30.3 0.367 29.0

+ transformer + top layer 0 11.1 31.2 0.353 29.6

Compared to RNN-seq, the transformer-based models generally underperformed, even

with fine-tuned BERT embeddings and an additional transformer encoder layer. It is possible

that our hyperparameter search was not exhaustive enough, especially as transformer models

generally require more tuning. Since training transformer models was more computationally
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expensive than RNN-seq models,4 we did not explore this model further.

5.3.2 The Role of Prosody

To explore the utility of prosody in DA recognition, we compare model performance with

and without prosody features. For all following experiments, the model is the RNN-seq with

BERT embeddings. The results are shown in Table 5.7. Compared to models trained on

only transcripts, the models using prosody outperform in most metrics, except macro F1.

Longer history also helps improve F1, SLER, and DER, but seems to hurt DSER.

Table 5.7: DA recognition results (error rates and macro F1) on the development set, com-

paring with and without using prosody features. For the model with prosody, the feature

set used here is the same as those in parsing (also described in detail in Chapter 3): pitch

(f0), energy (E), pause embeddings (re), raw pause (r), word duration (�).

Model History DSER DER F1 SLER

transcript 0 9.8 28.7 0.429 27.1

transcript+prosody 0 9.6 27.5 0.448 26.3

transcript 2 11.9 27.4 0.489 25.8

transcript+prosody 2 11.6 26.9 0.483 25.7

We also studied feature ablation; the performance of the prosody models are shown Table

5.8. Overall, most feature sets gave similar results. However, raw pause duration seems to

be more useful than pause embeddings, and word duration is the least useful, likely due to

errors in time alignments.

4With a sequence length N and hidden dimension size dh, for each layer, the time complexity is O(Nd2
h)

for RNNs while it is O(N2dh) for transformers. In the parsing case, the sequences were on the sentence
(segment) level, so N << dh. In DA recognition, since the sequences are now turns (optionally with
history), N ⇡ dh, making the training much more costly.
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Table 5.8: DA recognition ablation results (error rates and macro F1) on the model trained

with prosody and no context on SWDA dev set. f0 denotes pitch, E denotes energy, re denotes

pause embeddings, r denotes raw pause features, and � denotes word duration features.

Features DSER DER F1 SLER

f0, E, re, r, � 9.8 28.9 0.408 27.1

f0, E, re, � 9.2 28.0 0.404 26.5

f0, E, r, � 9.5 28.1 0.417 26.4

f0, E, � 10.1 27.5 0.424 26.3

f0, E, re, 10.0 28.6 0.429 27.1

f0, E, r 9.6 27.5 0.448 26.3

re, r 9.8 28.0 0.425 26.6

re, r, � 9.8 28.4 0.434 27.1

Table 5.9 presents results on SWDA test set using our best models (for models with

prosody, the features are f0, E, and r). While prosody helps in the no-context case, it hurts

when history is considered. It could be the case that the model trained with prosody is

overfitting when history is used, or context should be modeled di↵erently in combination

with prosody. This result also suggests that dialog history (transcripts) and prosody are

somewhat complementary. That is, prosody helps predict DA segmentation and category

more when there is not enough context information. When prosody does help (both in test

and dev set), the gain is most prominent for segmentation-related metrics: DSER (4.6%

relative improvement in test, 2.1% in dev), and DER (2.4% in test, 4.4% in dev).

5.3.3 Error Analysis

Figure 5.2 shows the confusion matrices on the dev set based on DER errors, from the

best performing DA predictors with no context on transcript only (5.2a) and with prosody
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Table 5.9: DA recognition results (error rates and macro F1) on test set. Prosody models

are those with the best feature set (raw pause, energy, and pitch).

Model History DSER DER F1 SLER

transcript 0 8.3 30.4 0.418 29.3

transcript+prosody 0 7.9 29.7 0.423 28.8

transcript 2 8.6 26.6 0.497 25.6

transcript+prosody 2 9.1 27.1 0.413 26.3

(a) Transcript-only model (b) Transcript+prosody model

Figure 5.2: Confusion matrices for the for the most common DA classes, comparing the

model trained only on transcript (left) and the one trained with prosody (right). Results are

on the dev set, model with no context, labels from DER scoring.
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(5.2b). Only the most common (and most commonly confused) DA tags are shown. Overall,

the model trained with prosody makes similar types of mistakes to those made by the one

trained on only transcripts, i.e. the most confusable tags are still statement opinion (sv) vs.

non-opinion (sd), and accept/acknowledge (aa) vs. backchannel (b). This is consistent with

findings by Jurafsky et al. (1998) and these are DA classes that human annotators also often

confuse. The model with prosody, while still not completely eliminating these mistakes, most

notably improved over the transcript-only model in the statement (non-opinion) vs. opinion

categories.

Some anecdotal examples are shown in Tables 5.10, 5.11, and 5.12, suggesting that

prosody in the model helps correct the segmentation error made by the model relying only

on transcript. From listening to these samples, this result is likely thanks to the lack of pause

and pitch reset in at the confusable word in each instance.

Table 5.10: Example where prosody helped avoid a segmentation error. “sd” is the “state-

ment (non-opinion)” dialog act.

words i was just like but i’m wasting my time

reference tags I I I I I I I I E sd

predicted tags (transcript) I I I E sd I I I I E sd

predicted tags (+prosody) I I I I I I I I E sd

Specific to segmentation errors, both the DA recognizers with and without prosody tend

to misidentify segment boundaries at similar tokens: tokens associated with spontaneous

speech phenomena such as fillers, disfluencies, and discourse cues. In particular, out of 3,288

dev segments, the model with prosody missed (wrongly predicted the tag I) in 477 instances,

where the most commonly associated tokens are ‘uh,’ ‘know’ (from the discourse cue “you

know”), and ‘it.’ The results are similar for the model using only transcripts: it missed 452

segments, in which the most commonly associated tokens are also ‘uh,’ ‘know,’ and ‘it.’. On



61

Table 5.11: Example where prosody helped avoid a segmentation error. “%” is the “incom-

plete/abandon” dialog act, and “qy” is the “yes/no question” dialog act.

words it’s uh is your cat an indoor cat or an outdoor cat

reference tags I I I ... I E qy

predicted tags (transcript) I E % I ... I E qy

predicted tags (+prosody) I I I ... I E qy

the other hand, there are comparatively fewer boundary insertion errors (wrongly predicting

a E x tag) in both models, though the transcript-only model seems to make more of this

type of error: 155 inserted segments vs. 116 by the model with prosody. Within these errors,

again the insertion is often associated with spontaneous speech phenomena, such as ‘know,’

‘uh,’ and ‘yeah’ in both models.

Table 5.12: Example where prosody helped avoid a segmentation error. “ˆ2” is the “collab-

orative completion” dialog act, and “aa” is the “accept/acknowledge” dialog act.

words just sit around that that’s true

reference tags I I E ˆ2 I I E aa

predicted tags (transcript) I I I E aa I E aa

predicted tags (+prosody) I I E aa I I E aa

5.4 Summary of Findings

In this chapter, we explored the the task of joint dialog act segmentation and classification

(which we refer to as DA recognition). Similar to parsing results, we found that contextu-

alized word representations are useful in yet another task, DA recognition, outperforming
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non-contextualized representations. An RNN-seq architecture with BERT embeddings im-

proved over the baseline system in Zhao and Kawahara (2019) in all metrics, where the

largest gains are in segmentation metrics. Regarding the use of prosody, we showed that

our approach for incorporating prosody into encoders helps improve DA recognition further

when no dialog history is used, with most gains also from segmentation error improvement.

Prosody also seems to help reducing common errors such as opinion vs. statement. When

the models misidentify a segment boundary, the associated tokens are often tokens associ-

ated with spontaneous speech phenomena, such as disfluencies, fillers, and discourse cues:

‘uh,’ ‘know,’ and ‘yeah.’ Overall, prosody and dialog history seem to be complementary

as prosody benefits segmentation while history benefits classification. However, the current

framework does not give benefit from combining these on the test data. A factored attention

model or some other architecture change might better take advantage of the two components

together.
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Chapter 6

EFFECTS OF IMPERFECT TRANSCRIPTS

Our experiments so far have been on human-annotated transcripts, which is an unreal-

istic assumption in most applications. In this chapter, we explore the e↵ect of imperfect

transcripts, i.e. ASR output, on our approach.

Prior work in parsing ASR outputs has been limited. One study by Kahn and Ostendorf

(2012) explored joint parsing and word recognition by re-ranking ASR hypotheses based on

parse features, showing an improvement in word recognition, as measured by word error

rate (WER). Another study (Marin and Ostendorf, 2014) explored parsing in the context

of domain adaptation and ASR name error detection. The authors showed that using out-

put parse features improved re-scoring word confusion networks (WCN) and benefited the

detection of ASR errors and out-of-vocabulary regions. Recent work by Yoshikawa et al.

(2016) studied joint parsing with disfluency detection on ASR transcripts. However, they

looked at dependency parsing and the method required extending the label set with speech-

specific dependency type labels to handle mismatched words. All these studies only used

ASR transcripts; prosodic features were not used.

Research in DA recognition on ASR outputs has also not been well studied. In Stolcke

et al. (2000), a few experiments looking at joint ASR and DA classification were studied, but

improvement on WER was minimal, likely due to the skewed distribution towards statement

dialog types. The work by Ang et al. (2005) used a pipeline approach for segmentation and

classification. Applying their system on ASR transcripts still saw benefit of using prosodic

features, but relatively less than when used on human transcripts. More recently, He et al.

(2018) also looked at DA classification on ASR, but not jointly with segmentation. They

applied a CNN on segment-level MFCCs, and improved classification accuracy by 2% over
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classifying only on ASR transcripts. Dang et al. (2020) trained a joint DA segmentation

and classification system with an acoustic-to-word model, implicitly providing distributed

representations of word-level ASR decoding information. Acoustic features were used but to

a limited extent in this work. Specifically, mean and variance of mel filter bank features were

the only source of acoustic information. Additionally, it was not clear where performance

most su↵ered by using imperfect transcripts.

In this chapter, we assess our models, which so far have been developed with available

human transcripts, on typical ASR system outputs. We first describe the ASR system used,

then present our studies on the two tasks, parsing and DA recognition, now with imperfect

transcripts.

6.1 Automatic Speech Recognizer

Common to both tasks, we use an o↵-the-shelf ASR system, ASPiRE (Povey et al., 2016),

which was trained on Fisher conversational speech data (Cieri et al., 2004), available in

Kaldi’s model suite.1 Briefly, the ASPiRE system was trained using a lattice-free maximum

mutual information (LF-MMI) criterion, with computation e�ciencies enabled by a phone-

level language model, outputs at one third the standard frame rate, and a simpler HMM

topology.

For parsing, ASR is run on Treebank sentence units; for DA recognition, ASR is run on

turns. The speech segmentation times are based on word times in the hand-corrected Mis-

sissippi State (MS) transcripts, using an alignment of Treebank words to the MS transcript

words. For each sentence or turn, we retain a set of (up to) 10 best ASR hypotheses (shorter

sentences often had fewer hypotheses). In parsing, we use these N-best hypotheses in our

experiments; in DA recognition, we only use the 1-best output. Word-level time alignments

are a by-product of the ASR system. Table 6.1 presents the WER for dev and test splits in

each task.

1https://kaldi-asr.org/models/m1

https://kaldi-asr.org/models/m1
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Table 6.1: WER (on 1-best) ASR transcripts for each split and task.

Split Parsing DA

dev 18.6% 20.9%

test 19.4% 23.6%

6.2 Constituency Parsing Experiments

We explore the problem of parsing ASR outputs by combining previous SOTA parsing sys-

tems: a high-quality constituency parser that integrates automatically learned prosodic fea-

tures, in addition to using powerful contextualized word representations, now applied to

imperfect transcripts.

For evaluation, we use F1 score on dependencies and brackets, as implemented in SPar-

seval (Roark et al., 2006). For bracket F1, SParseval requires an alignment between word

sequences of the gold and predicted parses. We obtain this alignment with Gestalt pattern

matching implemented in python’s difflib package.2 SParseval also has the option to com-

pute dependency F1, which does not require the reference and predicted sequences to have

the same words, as this measure is based on head-percolated tuples of (h, d, r) where h is

the head word, d is the dependent, and r is the relation between h and d. We present F1

scores for both bracket and dependency F1, but will focus on bracket scores as this was the

training objective of the original parser.

Comparison with previous work is not straightforward. For example, work by Marin

and Ostendorf (2014) used a di↵erent dataset; Yoshikawa et al. (2016) reported dependency

F1 but not bracket F1, in addition to using a di↵erent metric from SParseval; and Kahn

and Ostendorf (2012) used automatic sentence segmentation with parse scoring based on

the whole turn instead of sentence units. Additionally, each of these works used a di↵erent

2https://docs.python.org/3.6/library/difflib.html

https://docs.python.org/3.6/library/difflib.html
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(older) ASR system to generate automatic transcripts, di↵erent ranking algorithms, and

potentially di↵erent time alignments. However, we will mention relevant previous results

that are most comparable, e.g. constituency parsing on Switchboard.

Research Questions Our study aims to explore the following questions:

1. What features and ranking methods are useful for selecting better parse hypotheses?

2. How does parsing with multiple ASR hypotheses improve overall parsing performance?

3. Does prosody also help parsing ASR transcripts as it did in human transcripts? What

is the impact of considering multiple hypotheses?

4. How does parsing-based selection of ASR hypotheses a↵ect WER? What types of word

changes are involved as the parser/ranker chooses a di↵erent hypothesis from the 1-

best?

Rankers. Given a set of (up to) 10 ASR hypotheses for an utterance,3 we parse each

hypothesis and train a ranker to select the hypothesis with the best F1 score. This process

is formulated as a binary classification problem, based on Burges (2010). Specifically, for

each set of hypotheses, two sentences a, b are selected as a paired sample with features

Fab = [f1a � f1b, · · · , fNa � fNb], where fix is the i-th feature of a sentence x 2 {a, b},

including utterance length, number of disfluent nodes, parser output score, and ASR output

score. The corresponding label is Yab = 1 for that pair if the F1 score s(a) of sentence a is

greater than that of sentence b, s(b); Yab = 0 otherwise. In constructing the training set, we

make sure to always select the pairs with highest F1 score di↵erence, and 10 other random

pairs. The ranker is the classifier C() that learns to predict Ŷab = C(Fab). For each type

of F1 score, i.e. s() 2 {labeled, unlabeled} ⇥ {dependency, bracket}, we trained a separate

classifier to optimize for that score.

At test time, two ranking methods were used: point-wise and pair-wise. For point-wise

ranking, each hypothesis sentence a is considered individually to produce the probability

362% of the sentences have < 10 hypotheses; 24% have < 5.
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score P (a) = C(Xa) (where Xa is the feature vector associated with pairing sentence a with

a sentence of all feature values 0). The best hypothesis is chosen by â = argmaxaP (a). We

use micro F1 to evaluate the score spoint for the set of hypotheses chosen this way. For the

pair-wise ranking method, two hypotheses are selected at a time, where the hypothesis for

the next round of comparison is chosen based on its higher score. Similarly, micro F1 is used

as the score spoint to evaluate the hypotheses chosen this way.

We experimented with two types of binary classifiers: logistic regression (LR) and sup-

port vector machine classifier (SVC). Hyperparameters of each classifier were tuned on the

development set’s F1 scores. While many more complex ranking approaches have been pro-

posed (e.g. see Burges et al. (2008)), our focus is to understand what improvements can be

made over the 1-best baseline, even with a simple pairwise ranker. More complex ranking

algorithms are left for future work.

6.2.1 Results and Discussion

Ranking Features

Table 6.2 shows labeled dependency and bracket F1 scores on the development set, comparing

di↵erent feature sets, parsing with vs. without prosody, and ranking classifiers. In all settings,

the simple LR ranker outperforms SVC, achieving the best dependency F1 score of 0.520

and bracket F1 score of 0.713.

Within LR results, the best performing feature set consists of parse score (raw and nor-

malized by length), ASR score (raw and normalized by length), sentence length, tree depth,

and the number of certain types of constituents in the predicted parse: EDITED, INTJ,

PP, VP, NP. Between parsing with and without prosody, the parser trained with prosody

data slightly outperforms the transcript-based one: 0.713 vs. 0.707 for bracket F1, and 0.520

vs. 0.518 for dependency F1. For the remaining results, we focus on this configuration: LR

ranker with the full feature set.
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Table 6.2: Labeled dependency and labeled bracket F1 scores on the development set: “core

set” denotes the set of features: parser output score, ASR hypothesis score, sentence length,

and number of EDITED nodes. “depth” denotes parse tree depth and “*P” denotes the

counts of various constituents in the predicted parse (NP, VP, PP, INTJ)

Ranker LR SVC

Model feature set dependency bracket dependency bracket

transcript core set 0.514 0.701 0.488 0.665

+ depth 0.512 0.698 0.513 0.649

+ depth + *P 0.518 0.707 0.470 0.641

+prosody core set 0.517 0.705 0.483 0.652

+ depth 0.513 0.706 0.515 0.704

+ depth + *P 0.520 0.713 0.481 0.663

Parsing ASR hypotheses vs. 1-best

Table 6.3 presents results comparing the baseline (1-best hypothesis) result with our re-

ranked parser as well as several oracle sentence selection schemes. While using only parse

score underperforms using the 1-best hypothesis, the re-ranking using parse features im-

proves over the 1-best baseline in both transcript- and transcript+prosody parsers, for all

types of evaluations (labeled vs. unlabeled dependency vs. bracket F1). The di↵erences are

statistically significant at p < 0.01 using the bootstrap test (Efron and Tibshirani, 1993).

The Use of Prosody

SParseval by default does not include EDITED (disfluent) nodes in evaluation. This is

a disadvantage for our parser as it was trained to explicitly detect EDITED nodes. We

modified SParseval’s setting to consider EDITED nodes, and the e↵ect is as large as 0.5%.
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Table 6.3: F1 scores on the development set across di↵erent sentence selection settings.

selection by unlabeled labeled

sentence’s dependency bracket dependency bracket

1-best ASR 0.624 0.723 0.513 0.699

transcript parse score 0.588 0.698 0.499 0.664

best ranker 0.627 0.736 0.518 0.707

+prosody parse score 0.594 0.706 0.502 0.670

best ranker 0.629 0.740 0.520 0.713

oracle WER 0.674 0.788 0.555 0.770

oracle F1 0.702 0.822 0.587 0.798

gold trans. 0.933 0.938 0.909 0.928

We report our F1 scores in this setting, where disfluent nodes are included in scoring.

Between parsing with and without prosody, using prosody consistently gives better per-

formance, as shown in Table 6.3. Focusing on labeled bracket F1, on the test set (Table 6.4),

the relative improvement from using a ranker over the 1-best hypothesis is 1.5% for the best

transcript-only parser, and 2% for the prosody parser. Achievable improvement in relation

to the gap between oracle F1 score (sentence selected by best F1 score), the prosody parser

helps cover 12.4% of the gap, compared to 9.8% by the transcript-only parser.

The closest point of comparison is the study by Kahn and Ostendorf (2012), which reports

results on Switchboard using an ASR system. They achieved 24.1% 1-best WER (16.2% N-

best oracle WER, N = 50) on the test set. Using reference sentence segmentations (similar

to our scenario), they reported an unlabeled dependency F1 score of 0.734 with the oracle

result of 0.823. The higher scores (despite the higher WER compared to our system) reflect

di↵erences in a parse scoring implementation that incorporates sentence segmentation, and
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Table 6.4: Test set F1 scores: “gain” denotes the relative improvement of the system over

the 1-best hypothesis; “gap” denotes the gain achieved relative to the oracle score.

unlabeled labeled

dependency bracket dependency bracket

1-best ASR 0.612 0.700 0.491 0.676

best, transcript 0.619 0.714 0.494 0.687

best, +prosody 0.622 0.715 0.504 0.690

oracle F1 0.704 0.807 0.576 0.783

% gain, transcript 1.1% 2.0% 0.7% 1.5%

% gain, +prosody 1.7% 2.2% 2.5% 2.0%

% gap, transcript 7.2% 13.0% 4.0% 9.8%

% gap, +prosody 11.1% 14.2% 14.7% 12.4%

potentially the exclusion of EDITED nodes as implemented in default SParseval.

E↵ects on WER

Table 6.5 shows the corresponding test set WER on each setting. While the oracle parser

has lower WER, no significant improvement is observed for the parser-rankers over WER of

the 1-best hypothesis, which is not surprising as the training objective was not to directly

minimize WER.

For further analysis, we compare hypotheses selected by the best (transcript+prosody)

parser/re-ranker and the 1-best hypothesis. The best system overall results in a higher WER,

but slightly improves in sentences where all 10 hypotheses are available. This result could

be because most of the sentences are short (mean = 1.8–3 tokens) for those not producing

all 10 hypotheses; only longer sentences (mean = 12.7 tokens) have the full 10 hypotheses.

In sentences where the prosody parser/re-ranker outperformed the 1-best hypothesis,
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Table 6.5: WER on SWBD test set, computed depending on the way a hypothesis is selected:

the baseline is ASR 1-best hypothesis; the oracle is WER 1-best selection.

Ranker

unlabeled labeled

Parser score 1-best dependency bracket dependency bracket

- ASR 0.193 - - - -

transcript parse 0.243 0.195 0.192 0.201 0.192

+prosody parse 0.240 0.195 0.201 0.194 0.192

oracle parse - 0.159 0.167 0.170 0.160

- WER 0.115 - - - -

35% of these are associated with better WER, and 23% with worse WER. In both cases, the

majority of words involved are function words (82% when WER improved, 77% when WER

degraded). Some anecdotal (but common) examples are shown below; bold text denotes

words corrected by the prosody parser/re-ranker that were otherwise wrong (strike out text)

or missed in the 1-best hypothesis or the transcript-only parser/re-ranker. The better parser

appears to favor grammatically correct sentences.

• and uh really we ’re not doing much at all

• i mean that ’s better than george bush you who came out and said no

• do you like rap music

• it ’s bigger than just the benefits

• learn i learned not necessarily be the center of attention

Finally, we considered whether human transcription errors (Tran et al., 2018; Zayats

et al., 2019) could be a confounding factor. Within 5854 test sentences, 1616 have at least

one transcription error based on the MS-State corrections. Indeed, as Table 6.6 shows,
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Table 6.6: F1 score and WER on the test set, grouped by sentences with and without human

transcription errors (based on MS-State corrections).

bracket F1 WER

Sentences: 1-best ranker 1-best ranker

with error 0.648 0.660 0.235 0.237

without error 0.693 0.707 0.169 0.181

the bracket F1 score in sentences without human transcription errors are higher both for

the parser/re-ranker (0.707 vs. 0.660) and the 1-best hypothesis system (0.693 vs. 0.648).

Similarly, the WER is lower in sentences without human transcription errors.

6.3 Dialog Act Recognition Experiments

In DA recognition experiments with ASR transcripts, we use the RNN-seq model without

dialog history, comparing versions with and without prosody. In the prosody model, we use

the best performing set of features: pitch, energy, and raw pause. With ASR output, the

number of words in the reference sequence does not necessarily match those in the ASR

output. We report the following metrics to evaluate the performance on ASR transcripts;

except for SLER and ASER, the following metrics were also used in Dang et al. (2020).

Table 6.7 illustrates these computations.

• LER: Label Error Rate, computed as the word-level DA label error rate (i.e. edit

distance divided by number of reference tokens).

• SLER: Segment Label Error Rate, computed as the similarly to LER, but with the

sequence of collapsed labels, i.e. I labels are ignored.

• DAER: Dialog Act Error Rate, computed similarly to LER, i.e. DAER is also a word

error rate on the sequence of labeled tokens but also taking into account the identity
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of the dialog act x in the current segment, so I and E x labels are converted to x for all

tokens in that segment.

• SER: Segment Error Rate, computed as the normalized sum of minimum distances

between indices of segment positions between the reference and the predicted turn:

SER =
1

2NG

 
X

g2G

min

p2P
|p� g|+

X

p2P

min

g2G
|p� g|

!

where G,P are sets of segmentation token indices in reference and prediction, respec-

tively; NG is the number of tokens in the reference turn.

• ASER: Aligned Segment Error Rate, computed similarly as SER, but after aligning

reference and ASR transcript tokens to obtain sequences of the same length. Insertion

errors are included in the reference sequence, and deletion errors are included in the

ASR sequence, so that each token has an index for SER computation.

• NSER: Segmentation count Error Rate, computed as the di↵erence in number of pre-

dicted and reference segment counts, normalized by the number of reference segments.

NSER =
|NP �NG|

NG

Our results are not comparable with those in (Dang et al., 2020), as they used a dif-

ferent data split for train/dev/test, and it was not clear which conversations were used for

which split. Additionally, the ASR system is di↵erent, as they report a much higher WER

(34% on their test set). Since this is the only work so far using ASR transcripts in joint

DA segmentation and classification, we report their results but note that there are many

discrepancies.

Research Questions Our study aims to explore the following questions:

1. How is DA recognition a↵ected by imperfect transcripts? Which aspect is more af-

fected: segmentation or classification?

2. How does prosody help DA recognition on ASR transcripts, if at all?
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Table 6.7: Example computations of metrics on ASR transcripts. For LER, the label errors

are shown in red (“Predicted tags” row); the edit distance here is 4, so LER = 4/5 = 0.8.

For DAER, the errors also shown in red illustrate edit distance is again 4, but contributed

by di↵erent tokens, and also result in DAER= 0.8. LWER here is 2/3 = 0.67, NSER =

(4� 3)/3 = 0.33, SER = (0+1+0)+(0+1+0+1)
2⇤5 = 0.3. ASER = (1+0+0)+(0+1+0+1)

2⇤5 = 0.3.

Reference transcript right yes he - loves cats -

Reference tags E b E sv I - I E sd -

ASR transcript - yes she she loves cats yes

Predicted tags - E ny I I E sv E sd E ny

DAER reference sequence b sv sd sd sd

DAER predicted sequence ny sv sv sv sd ny

Reference tags - utterance level E b E sv E sd

Predicted tags - utterance level E ny E sv E sd E ny

Reference segment indices (G) 0 1 4

Predicted segment indices (P) 0 3 4 5

Aligned reference segment indices (G’) 0 1 5

Aligned predicted segment indices (P’) 1 4 5 6
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6.3.1 Results and Discussion

DA Recognition on Imperfect Transcripts

Table 6.8 and present results of DA recognition on ASR output, compared to the same

metrics computed on human transcripts. While predicting the number of segments (macro

NSER) and joint labels (LER) su↵ered the most degradation, classification of DA labels

su↵ered relatively less loss (SLER, DAER, and micro NSER). As expected, the performance

on imperfect transcripts is significant worse, especially in metrics that take into account the

number of tokens in the sequence, i.e. SER and LER are overly impacted by ASR errors. Our

ASER metric is more informative considering such errors, so we will report only on NSER,

SLER, DAER, and ASER in the following analyses.

Between segmentation-focused metrics (ASER, NSER) and classification-focused met-

rics (SLER, DAER), segmentation tends to be more a↵ected (degrades more) compared to

classification when imperfect transcripts are used. This further motivates the importance

of looking at the segmentation problem, as previous works that only consider classification

might be underestimating the challenge in this DA recognition task.

Table 6.8: Macro and micro DA recognition results (error rates) on dev set, comparing DA

recognition on human vs. ASR transcripts. LER and SER are overly sensitive to ASR errors.

F1 Model SLER LER DAER NSER SER ASER

Macro transcript 0.271 0.084 0.220 0.079 0.041

asr 0.405 0.251 0.418 0.110 0.177 0.117

%�(asr, trans) 49.4% 198.1% 90.0% 38.0% 333.8% 187.2%

Micro transcript 0.291 0.042 0.213 0.090 0.061

asr 0.372 0.109 0.269 0.105 1.244 0.107

%�(asr, trans) 27.8% 157.8% 26.2% 15.8% 1938.5% 74.8%
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The Role of Prosody

Table 6.9 presents our DA recognition results with and without prosody. The models with

prosody improve over those without on most metrics, except NSER and ASER, both for

human and ASR transcripts. The NSER only takes into account the number of segments

in respective turns, so it is sensitive to missed or inserted segment tags. Most importantly,

using prosody in the ASR setups gives a larger gain (or smaller loss) than in the perfect

transcript setup: improving macro SLER and DAER by 15-17% on ASR but only 2-3% on

perfect transcripts. Similarly, micro SLER improves by 9% on ASR, using prosody, but only

1% on human transcripts.

Table 6.9: DA recognition results (error rates) on dev set, comparing DA recognition on

human vs. ASR transcripts using the model trained with and without prosody.

F1 Model SLER DAER NSER ASER

Macro transcript 0.271 0.220 0.079 0.041

transcript+prosody 0.263 0.214 0.083 0.043

%�(+prosody, transcript) 3.0% 2.8% -4.0% -5.8%

asr 0.405 0.418 0.110 0.117

asr+prosody 0.333 0.347 0.115 0.118

%�(+prosody, asr) 17.7% 17.1% -5.0% -0.5%

Micro transcript 0.291 0.213 0.090 0.061

transcript+prosody 0.288 0.206 0.110 0.066

%�(+prosody, transcript) 0.9% 3.1% -21.6% -7.6%

asr 0.372 0.269 0.105 0.107

asr+prosody 0.337 0.259 0.113 0.105

%�(+prosody, asr) 9.3% 3.8% -8.4% 1.8%
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Comparing the degradation due to imperfect transcript, Table 6.10 suggests that using

prosody leads to a less severe performance drop compared to using only ASR transcripts:

relative error increase is smaller for all metrics (except macro NSER) when prosody is used

with ASR transcripts.

Table 6.10: Relative di↵erences in macro and micro DA recognition results on dev set, with

and without prosody.

F1 Model SLER DAER NSER ASER

Macro %�(asr, transcript) 49.4% 90.0% 38.0% 187.2%

%�(asr, transcript) + prosody 26.7% 62.1% 39.4% 172.6%

Micro %�(asr, transcript) 27.8% 26.2% 15.8% 74.8%

%�(asr, transcript) + prosody 17.0% 25.3% 3.3% 59.5%

Finally, we show corresponding DA recognition results on the test set in Tables 6.11 and

6.12. With the caveat of large discrepancies in ASR systems and experiment setups, our

approach of integrating prosody also improved over a recent work by (Dang et al., 2020).

6.4 Summary of Findings

In this chapter, we assessed the performance of our developed models on imperfect tran-

scripts, i.e. transcripts from a typical ASR system. In our parsing experiments, we tested a

SOTA parser that incorporates prosodic information. Our simple re-ranking framework us-

ing standard parse tree features and ASR scores achieved 12–14% improvements in F1 scores

over 1-best parses relative to the oracle N-best gain. In all settings, parsing using prosodic

features outperforms parsing with only transcripts. When parsing improvement is observed,

words involved in the hypothesis selection change are mostly function words (around 80%).

For DA recognition, we showed that prosody also helps improve error rates over models
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Table 6.11: DA recognition results on dev set. All metrics are macro averages.

Model SLER DAER NSER ASER

transcript 0.293 0.247 0.072 0.040

transcript+prosody 0.288 0.243 0.071 0.040

%�(+prosody, transcript) 1.8% 1.4% 2.0% 0.7%

asr+fbank (Dang et al., 2020) - - 0.148 -

asr 0.459 0.484 0.123 0.141

asr+prosody 0.391 0.416 0.124 0.148

%�(+prosody, asr) 14.8% 13.9% -0.9% -4.3%

%�(asr, transcript) 56.6% 96.0% 70.8% 253.6%

%�(asr, transcript) + prosody 35.8% 71.1% 75.9% 271.4%

Table 6.12: DA recognition results on dev set. All metrics are micro averages.

Model SLER DAER NSER ASER

transcript 0.312 0.247 0.073 0.050

transcript+prosody 0.310 0.242 0.081 0.049

%�(+pros, trans) 0.8% 1.9% -11.0% 3.3%

asr+fbank (Dang et al., 2020) - 0.351 - -

asr 0.424 0.330 0.070 0.101

asr+prosody 0.387 0.303 0.083 0.100

%�(+prosody, asr) 8.6% 8.1% -17.7% 1.8%

%�(asr, transcript) 35.7% 33.5% -3.7% 101.8%

%�(asr, transcript) + prosody 25.0% 25.1% 2.1% 104.9%
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trained on only transcripts, where the relative gains are significantly higher in the ASR setting

than in the perfect transcript setting. In assessing performance on ASR transcripts, we also

introduced new metrics, SLER and ASER, that are more informative and less sensitive

to ASR errors. Finally, we found that DA segmentation is more severely a↵ected than

DA classification when ASR transcripts are used, motivating further research in joint DA

recognition instead of focusing only on classification.
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Chapter 7

CONCLUSION

In this final chapter, we summarize our findings and contributions in Section 7.1, and

suggest directions for future research in Section 7.2.

7.1 Summary of Contributions

In this thesis, we have made the following contributions.

We present a computational model of prosody that automatically learns acoustic rep-

resentations useful for spoken language understanding. This model learns to summarize

frame-based speech features such as fundamental frequency and energy via a CNN, and is

trained jointly with a downstream task. Our model therefore can automatically learn task-

specific speech signal representations without the need for expensive human annotations. In

experiments with human-human conversational speech, we demonstrate the impact on two

tasks: constituency parsing and dialog act recognition (segmentation and classification).

Our first sets of results provide new examples showing that contextualized embeddings

are indeed powerful tools useful in a range of NLP tasks. Despite being trained on written

text, these embeddings provided significant gains over non-contextualized ones in all our

experiments. Given these strong baselines, we show that our use of prosody can still benefit

parsing and DA recognition, for both hand transcripts and ASR transcripts. Additionally, we

show analyses of cases where prosody most benefits these two tasks, contributing to a better

understanding of how acoustic-prosodic information can be integrated into NLP systems.

For constituency parsing, we show that prosody most benefits longer and more disfluent

sentences, helping disambiguate and avoid attachment errors, and detect disfluencies. We

show empirically that spontaneous speech and read speech di↵er in both the lexical style
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and prosodic style, where a parser trained on spontaneous speech su↵ers less performance

degradation when evaluated on read speech, as opposed to vice versa. This result suggests

that spontaneous speech in general is useful for training AI systems, both in terms of word

choice and prosody. Our finding further motivates the importance of studying natural,

spontaneous speech when developing language technology.

We also assessed our parsers on imperfect, i.e. ASR transcripts. Using a simple re-ranking

system, we show that prosody still helps parsing, yielding improvements over 1-best parses

relative to the oracle N-best gain. In all settings, parsing using prosodic features outperforms

parsing with only transcript information. In relation to WER, the better parser/re-ranker

appears to favor grammatically correct sentences.

In DA recognition on independent turns, we show that using prosody improves joint

segmentation and classification, with more gains achieved mainly thanks to segmentation and

correction of opinion DAs. Overall, our experiments suggest that prosody and dialog history

seem to be complementary, as prosody benefits segmentation while turn history benefits

classification. However, our current framework does not give benefit from combining these

two sources of context on the test data.

In assessing our DA recognition system on ASR transcripts, similar to parsing results, we

show that prosody is still beneficial, where the relative reduction in error rates is significantly

better in the ASR setting than in the hand transcript setting. We also introduced new

metrics, segment label error rate (SLER) and aligned segment error rate (ASER), which are

more informative and less sensitive to ASR errors. Additionally, we found that segmentation

is more severely a↵ected than DA classification when ASR transcripts are used, motivating

further research in joint DA recognition instead of focusing only on classification.

Both parsing and dialog act recognition are important components of automatic spoken

language processing systems. Our findings in this thesis may lead to better understanding

of prosody in human-human communication, which then can be applied to human-computer

interaction systems. Consequently, our contributions have the potential to improve lan-

guage systems, by facilitating accessibility via more natural human-computer interactions,
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especially in education, health care, elder care, and numerous other AI-assisted domains.

7.2 Future Directions

For future work, some promising directions we think are worth exploring include: new ar-

chitectures for both the encoder and decoder, new methods of integrating prosody-sensitive

language processing in ASR, and assessment of impact of prosody on other SLU tasks.

On the encoder side, transformers have recently become more common, and sometimes

even a more popular alternative to RNNs. However, it is not straightforward to train trans-

formers, as they can be hard to tune e↵ectively with smaller batch sizes. As we found in our

DA recognition experiments, an under-tuned transformer architecture yielded poor results.

Faster and more trainable transformer encoders might therefore provide some gain. Recent

promising models include the Reformer (Kitaev et al., 2020), Performer (Choromanski et al.,

2020), Longformer (Beltagy et al., 2020), Linformer (Wang et al., 2020), and Linear Trans-

formers (Katharopoulos et al., 2020), among others. CNN modeling enhancements can also

benefit from doing cross attention between the text and speech modalities, as this was shown

to be important in earlier work (Shriberg and Stolcke, 2004). Additionally, better human-

computer interaction might require incremental speech processing, which would necessitate

more significant encoder architecture changes.

New architectures for the decoder can also be explored. So far, we have only considered

RNN decoders and FF decoders as used in tagging tasks. A full transformer decoder can

also be explored, though the issue of e�ciency and trainability should also be taken into

account, as with transformer encoders. As our DA recognition results showed, dialog history

and prosody are potentially complementary, with prosody helping segmentation more and

history helping classification more, although the combination did not help both. It may

be useful to introduce a factored attention mechanism to better use dialog and prosody

contexts in a more flexible manner, so that better performance in one aspect (segmentation)

does not hurt that in another (classification). Modeling of speakers as context would also be a

promising direction, as demonstrated in Cheng et al. (2019). This is additionally interesting
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from the scientific perspective, as modeling speaker interactions, both through words and

prosodic cues, can help us better understand aspects of human conversation dynamics, such

as entrainment.

How to leverage SOTA ASR systems is another promising direction, as integration with

ASR systems should be considered for practical impact. While end-to-end joint learning of

ASR and SLU, as in Dang et al. (2020), is a popular direction, an advantage of independent

learning (or at least pretraining) of ASR is that transcribing speech is much less costly than

annotating language structures, so training resources for SLU are more costly than for ASR.

With a pipeline approach, there are questions of how to account for ASR uncertainly and

how to align acoustic cues to words. Not all ASR systems provide n-best hypotheses, so it

will be important to explore di↵erent ways to represent and use this uncertainty information

(e.g. hypothesis probability scores, full lattices, etc.).

Another important and practical issue to consider is imperfect time alignments. So far,

we relied on human transcripts or ASR systems with generally reliable time alignments. This

is not necessarily the case, as SOTA ASR systems do not always provide time alignments,

or the alignments might be poor. This issue also gives rise to the question of (de)coupling

acoustic features and word features. For example, which fusion or attention mechanisms

are appropriate — local attention vs. global attention on the whole sequence, word-level

lexical-prosodic feature fusion vs. sequence level fusion.

Finally, we should assess the impact of integrating prosody on other SLU tasks, or more

general versions with even less ideal transcripts, e.g. not having hand-annotated sentence

or turn boundaries. The natural next task for constituency parsing would be joint parsing

and sentence segmentation, and turn detection for both parsing and DA recognition. As

ASR improves, human-computer communication can become more natural and therefore it

is more promising for prosody to be useful. Examples of such systems include dialog state

tracking, spoken chat intent detection, personal tutoring bots, and many more.
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Appendix A

APPENDIX

A.1 Implementation

Constituency Parsing Most of the data preprocessing code is available at (1), part of

our data preprocessing pipeline also uses (2). The implementation for the RNN-seq parsing

models is available at (3). For the transformer-based models, the codebase is available at

(4), which was adapted from (5).

(1) https://github.com/trangham283/seq2seq_parser/tree/master/src/data_

preps

(2) https://github.com/syllog1sm/swbd_tools

(3) https://github.com/shtoshni92/speech_parsing

(4) https://github.com/trangham283/prosody_nlp/tree/master/code/self_

attn_speech_parser

(5) https://github.com/nikitakit/self-attentive-parser

Dialog Act Recognition Both the RNN- and transformer-based models for DA recogni-

tion are available at (1), which is adapted from (2). Preprocessing steps were based on (3)

and (4).

(1) https://github.com/trangham283/joint_seg_da

(2) https://github.com/ZHAOTING/dialog-processing

(3) https://github.com/hao-cheng/dynamic_speaker_model

(4) https://github.com/cgpotts/swda

https://github.com/trangham283/seq2seq_parser/tree/master/src/data_preps
https://github.com/trangham283/seq2seq_parser/tree/master/src/data_preps
https://github.com/syllog1sm/swbd_tools
https://github.com/shtoshni92/speech_parsing
https://github.com/trangham283/prosody_nlp/tree/master/code/self_attn_speech_parser
https://github.com/trangham283/prosody_nlp/tree/master/code/self_attn_speech_parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/trangham283/joint_seg_da
https://github.com/ZHAOTING/dialog-processing
https://github.com/hao-cheng/dynamic_speaker_model
https://github.com/cgpotts/swda
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Automatic Speech Recognition The experiments for parsing and DA recognition on

imperfect transcripts can be found at (1). To use the Kaldi ASR system, some guidance can

be found at (2).

(1) https://github.com/trangham283/asr_preps

(2) https://github.com/trangham283/kaldi_examples

A.2 Data Splits

Constituency Parsing Table A.1 shows statistics of our Switchboard dataset used in

parsing experiments. The splits are: conversations sw2000 to sw3000 for training (train),

sw4500 to sw4936 for validation (dev), and sw4000 to sw4153 for evaluation (test). In

addition, previous work has reserved sw4154 to sw4500 for “future use” (dev2), but we

added this set to our training set. That is, all of our models are trained on Switchboard

conversations sw2000 to sw3000 as well as sw4154 to sw4500.

Table A.1: Data statistics in parsing experiments.

Split # Conversations # Sentences # Tokens

train 541 97,113 729,252

dev 51 5,769 50,445

test 50 5,901 48,625

Dialog Act Recognition The train/dev/test splits for DA recognition tasks are not the

same as those in parsing. The splits most commonly used in DA Classification work follow

those defined in https://web.stanford.edu/~jurafsky/ws97/. Table A.2 shows statistics

of this SWDA set for DA recognition experiments.

https://github.com/trangham283/asr_preps
https://github.com/trangham283/kaldi_examples
https://web.stanford.edu/~jurafsky/ws97/
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Table A.2: Data statistics in DA recognition experiments.

Split # Conversations # Turns #Segments # Tokens

train 1,115 97,367 193,805 1,525,112

dev 21 1,501 3,290 26,819

test 19 2,147 4,096 31,062

A.3 Pause Duration Statistics

Figure A.1 shows the distribution of pause durations in our training data. Our pause buckets

described in Section 3.2.1 were based on this distribution of pause lengths.

Figure A.1: Histogram of inter-word pause durations in our training set. As expected, most

of the pauses are less than 1 second. In some very rare cases, pauses of 5+ seconds occur

within a sentence.
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